984 resultados para Elliptic affine algebras
Resumo:
Graham Hall
Resumo:
The solutions of a large class of hierarchies of zero-curvature equations that includes Toda- and KdV-type hierarchies are investigated. All these hierarchies are constructed from affine (twisted or untwisted) Kac-Moody algebras g. Their common feature is that they have some special vacuum solutions corresponding to Lax operators lying in some Abelian (up to the central term) subalgebra of g; in some interesting cases such subalgebras are of the Heisenberg type. Using the dressing transformation method, the solutions in the orbit of those vacuum solutions are constructed in a uniform way. Then, the generalized tau-functions for those hierarchies are defined as an alternative set of variables corresponding to certain matrix elements evaluated in the integrable highest-weight representations of g. Such definition of tau-functions applies for any level of the representation, and it is independent of its realization (vertex operator or not). The particular important cases of generalized mKdV and KdV hierarchies as well as the Abelian and non-Abelian affine Toda theories are discussed in detail. © 1997 American Institute of Physics.
Resumo:
We develop the energy norm a-posteriori error estimation for hp-version discontinuous Galerkin (DG) discretizations of elliptic boundary-value problems on 1-irregularly, isotropically refined affine hexahedral meshes in three dimensions. We derive a reliable and efficient indicator for the errors measured in terms of the natural energy norm. The ratio of the efficiency and reliability constants is independent of the local mesh sizes and weakly depending on the polynomial degrees. In our analysis we make use of an hp-version averaging operator in three dimensions, which we explicitly construct and analyze. We use our error indicator in an hp-adaptive refinement algorithm and illustrate its practical performance in a series of numerical examples. Our numerical results indicate that exponential rates of convergence are achieved for problems with smooth solutions, as well as for problems with isotropic corner singularities.
Resumo:
We present STAR results on the elliptic flow upsilon(2) Of charged hadrons, strange and multistrange particles from,root s(NN) = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). The detailed study of the centrality dependence of upsilon(2) over a broad transverse momentum range is presented. Comparisons of different analysis methods are made in order to estimate systematic uncertainties. To discuss the nonflow effect, we have performed the first analysis Of upsilon(2) with the Lee-Yang zero method for K(S)(0) and A. In the relatively low PT region, P(T) <= 2 GeV/c, a scaling with m(T) - m is observed for identified hadrons in each centrality bin studied. However, we do not observe nu 2(p(T))) scaled by the participant eccentricity to be independent of centrality. At higher PT, 2 1 <= PT <= 6 GeV/c, V2 scales with quark number for all hadrons studied. For the multistrange hadron Omega, which does not suffer appreciable hadronic interactions, the values of upsilon(2) are consistent with both m(T) - m scaling at low p(T) and number-of-quark scaling at intermediate p(T). As a function ofcollision centrality, an increase of p(T)-integrated upsilon(2) scaled by the participant eccentricity has been observed, indicating a stronger collective flow in more central Au+Au collisions.
Resumo:
There exist uniquely ergodic affine interval exchange transformations of [0,1] with flips which have wandering intervals and are such that the support of the invariant measure is a Cantor set.
Resumo:
Differential measurements of the elliptic (upsilon(2)) and hexadecapole (upsilon(4)) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p(T)) and collision centrality or number of participant nucleons (N(part)) for Au + Au collisions at root s(NN) = 200 GeV/ The upsilon(2,4) measurements at pseudorapidity vertical bar eta vertical bar <= 0.35, obtained with four separate reaction-plane detectors positioned in the range 1.0 < vertical bar eta vertical bar < 3.9, show good agreement, indicating the absence of significant Delta eta-dependent nonflow correlations. Sizable values for upsilon(4)(p(T)) are observed with a ratio upsilon(4)(p(T), N(part))/upsilon(2)(2)(p(T), N(part)) approximate to 0.8 for 50 less than or similar to N(part) less than or similar to 200, which is compatible with the combined effects of a finite viscosity and initial eccentricity fluctuations. For N(part) greater than or similar to 200 this ratio increases up to 1.7 in the most central collisions.
Resumo:
We present inclusive charged hadron elliptic flow (v(2)) measured over the pseudorapidity range vertical bar eta vertical bar < 0.35 in Au+Au collisions at s(NN)=200 GeV. Results for v(2) are presented over a broad range of transverse momentum (p(T)=0.2-8.0 GeV/c) and centrality (0-60%). To study nonflow effects that are correlations other than collective flow, as well as the fluctuations of v(2), we compare two different analysis methods: (1) the event-plane method from two independent subdetectors at forward (vertical bar eta vertical bar=3.1-3.9) and beam (vertical bar eta vertical bar>6.5) pseudorapidities and (2) the two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p(T) and in centrality 0-40%. There is at most a 20% difference in the v(2) between the two event-plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event-plane measurements are discussed.
Resumo:
We show the effects of the granular structure of the initial conditions of a hydrodynamic description of high-energy nucleus-nucleus collisions on some observables, especially on the elliptic-flow parameter upsilon(2). Such a structure enhances production of isotropically distributed high-p(T) particles, making upsilon(2) smaller there. Also, it reduces upsilon(2) in the forward and backward regions where the global matter density is smaller and, therefore, where such effects become more efficacious.
Resumo:
We present the results of an elliptic flow, v(2), analysis of Cu + Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at root s(NN) = 62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v(2)(p(T)), is reported for different collision centralities for charged hadrons h(+/-) and strangeness-ontaining hadrons K(S)(0), Lambda, Xi, and phi in the midrapidity region vertical bar eta vertical bar < 1.0. Significant reduction in systematic uncertainty of the measurement due to nonflow effects has been achieved by correlating particles at midrapidity, vertical bar eta vertical bar < 1.0, with those at forward rapidity, 2.5 < vertical bar eta vertical bar < 4.0. We also present azimuthal correlations in p + p collisions at root s = 200 GeV to help in estimating nonflow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au + Au collisions at root s(NN) = 200 GeV. We observe that v(2)(p(T)) of strange hadrons has similar scaling properties as were first observed in Au + Au collisions, that is, (i) at low transverse momenta, p(T) < 2 GeV/c, v(2) scales with transverse kinetic energy, m(T) - m, and (ii) at intermediate p(T), 2 < p(T) < 4 GeV/c, it scales with the number of constituent quarks, n(q.) We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v(2)(p(T)) for K(S)(0) and Lambda. Eccentricity scaled v(2) values, v(2)/epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au + Au collisions, which go further in density, shows that v(2)/epsilon depends on the system size, that is, the number of participants N(part). This indicates that the ideal hydrodynamic limit is not reached in Cu + Cu collisions, presumably because the assumption of thermalization is not attained.
Resumo:
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.
Resumo:
Let A be an iterated tilted algebra. We will construct an Auslander generator M in order to show that the representation dimension of A is three in case A is representation infinite.
Resumo:
For the last decade, elliptic curve cryptography has gained increasing interest in industry and in the academic community. This is especially due to the high level of security it provides with relatively small keys and to its ability to create very efficient and multifunctional cryptographic schemes by means of bilinear pairings. Pairings require pairing-friendly elliptic curves and among the possible choices, Barreto-Naehrig (BN) curves arguably constitute one of the most versatile families. In this paper, we further expand the potential of the BN curve family. We describe BN curves that are not only computationally very simple to generate, but also specially suitable for efficient implementation on a very broad range of scenarios. We also present implementation results of the optimal ate pairing using such a curve defined over a 254-bit prime field. (C) 2001 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we propose an approach to the transient and steady-state analysis of the affine combination of one fast and one slow adaptive filters. The theoretical models are based on expressions for the excess mean-square error (EMSE) and cross-EMSE of the component filters, which allows their application to different combinations of algorithms, such as least mean-squares (LMS), normalized LMS (NLMS), and constant modulus algorithm (CMA), considering white or colored inputs and stationary or nonstationary environments. Since the desired universal behavior of the combination depends on the correct estimation of the mixing parameter at every instant, its adaptation is also taken into account in the transient analysis. Furthermore, we propose normalized algorithms for the adaptation of the mixing parameter that exhibit good performance. Good agreement between analysis and simulation results is always observed.
Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm
Resumo:
We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.
Resumo:
A new type of nonlocal currents (quasi-particles), which we call twisted parafermions, and its corresponding twisted Z-algebra are found. The system consists of one spin-1 bosonic field and six nonlocal fields of fractional spins. Jacobi-type identities for the twisted parafermions are derived, and a new conformal field theory is constructed from these currents. As an application, a parafermionic representation of the twisted affine current algebra A(2)((2)) is given.