966 resultados para Electron spectroscopy.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arguments are given that lead to a formalism for calculating near K-edge structure in electron energy loss spectroscopy (EELS). This is essentially a one electron picture, while many body effects may be introduced at different levels, such as the local density approximation to density functional theory or the GW approximation to the electron self-energy. Calculations are made within the all electron LMTO scheme in crystals with complex atomic and electronic structures, and these are compared with experiment. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oxygen is shown to adsorb molecularly on gold as well as on Ag and Pt. UV and X-ray photoelectron spectroscopy and Auger electron spectroscopy have been employed to investigate electron states of molecularly adsorbed oxygen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oxygen is shown to adsorb molecularly on gold as well as on Ag and Pt. UV and X-ray photoelectron spectroscopy and Auger electron spectroscopy have been employed to investigate electron states of molecularly adsorbed oxygen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Surface oxidation of three metglasses in the Cu-Zr system has been investigated by employing X-ray photoelectron spectroscopy and Auger electron spectroscopy with a view to comparing their oxidation behaviour with that of the corresponding crystalline states of the alloys. Surface oxidation of pure Zr metal has also been examined in detail using these techniques. Sub-oxides of Zr are formed during the initial stages of oxidation of Zr (at oxygen exposures <10L), while at higher exposures, ZrO2 is formed together with the highest possible sub-oxide which the authors designate as 'ZrO'. The relative proportion of 'ZrO' goes through a maximum in the range 25-50 L. Both the glassy and the crystalline states of the Cu-Zr alloys exhibit preferential oxidation of Zr. The glassy alloys exhibit a higher rate of oxidation at intermediate exposures compared with the crystalline states of the alloys; the extent of oxidation at higher oxygen exposures is, however, higher for crystalline alloys. Interatomic Auger transitions have been found in the Zr+O2 system as well as in Cu-Zr alloys.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the new oxide superconductors, structure and oxygen stoichiometry play the most crucial role. Thus, all the high-temperature oxide superconductors are orthorhombic perovskites with low-dimensional features. Oxygen stoichiometry in YBa2Cu3O7-δ has an important bearing on the structure as well as superconductivity. This is equally true in the La3-xBa3+xCu 6O14+δ system of which only the 123 oxide (x = 1) with the orthorhombic structure shows high Tc. Orthorhombicity though not essential, is generally found ; it is necessary for the formation of twins. The nature of oxygen and copper in the cuprates has been examined by electron spectroscopy. Copper in these cuprates is only in 1 + and 2 + states. It seems likely that oxygen holes are responsible for superconductivity of the cuprates as well as Ba(Bi, Pb)O3. High Tc superconductivity is also found in oxides of the Bi-(Ca, Sr)-Cu-O and related oxides possessing Cu-O sheets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the electronic structure of La1-xSrxMnO3+δ, x=0, 0.1, 0.2, 0.3, and 0.4, across the semiconductor-metal transition, using various electron spectroscopy techniques. The negligible intensity seen at EF using ultraviolet photoemission spectroscopy and bremsstrahlung isochromat spectroscopy (BIS) indicate an unusual semiconductor-metal transition observed for x≥0.2, consistent with the resistivity data. The BIS spectra show doped hole states developing about 1.4 eV above EF as a function of x. Auger electron spectroscopy gives an estimate of the intra-atomic Coulomb energy in the O 2p manifold to be about 6.8 eV. The Mn 2p core-level spectrum of LaMnO3, analyzed in terms of a configuration-interaction calculation, gives parameter values of the charge-transfer energy Δ=5.0 eV, the hybridization strength between Mn 3d and O 2p states, t=3.8 eV, and the on-site Coulomb energy in Mn 3d states Udd=4.0 eV, suggesting a mixed character for the ground state of LaMnO3.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the electronic structure of Sr2RuO4, a noncuprate layered superconductor (T-c=0.93 K), using electron spectroscopy. X-ray photoemission spectroscopy shows that the single particle occupied density of states (DOS) is in fair agreement with the calculated DOS. However, resonant photoemission spectroscopy across the Ru 4p-4d threshold establishes the existence of a correlation satellite to the Ru 4d band. The results indicate substantial charge-transfer character at the Fermi level, with on-site correlations U-dd comparable in magnitude to the Ru-O hopping integral, like the cuprates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science.This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and subsurface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

X-ray Photoelectron Spectroscopy (XPS) plays a central role in the investigation of electronic properties as well as compositional analysis of almost every conceivable material. However, a very short inelastic mean free path (IMFP) and the limited photon flux in standard laboratory conditions render this technique very much surface sensitive. Thus, the electronic structure buried below several layers of a heterogeneous sample is not accessible with usual photoemission techniques. An obvious way to overcome this limitation is to use a considerably higher energy photon source, as this increases the IMFP of the photo-ejected electron, thereby making the technique more depth and bulk sensitive. Due to this obvious advantage, Hard X-ray Photo Electron Spectroscopy (HAXPES) is rapidly becoming an extremely powerful tool for chemical, elemental, compositional and electronic characterization of bulk systems, more so with reference to systems characterized by the presence of buried interfaces and other types of chemical heterogeneity. The relevance of such an investigative tool becomes evident when we specifically note the ever-increasing importance of heterostructures and interfaces in the context of a wide range of device applications, spanning electronic, magnetic, optical and energy applications. The interest in this nondestructive, element specific HAXPES technique has grown rapidly in the past few years; we discuss critically its extensive use in the study of depth resolved electronic properties of nanocrystals, multilayer superlattices and buried interfaces, revealing their internal structures. We specifically present a comparative discussion, with examples, on two most commonly used methods to determine internal structures of heterostructured systems using XPS. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microscopic characteristics of the GaAs(100) surface treated with P2S5/NH4OH solution has been investigated by using Auger-electron spectroscopy (AES) and x-ray photoemission spectroscopy (XPS). AES reveals that only phosphorus and sulfur, but not oxygen, are contained in the interface between passivation film and GaAs substrate. Using XPS it is found that both Ga2O3 and As2O3 are removed from the GaAs surface by the P2S5/NH4OH treatment; instead, gallium sulfide and arsenic sulfide are formed. The passivation film results in a reduction of the density of states of the surface electrons and an improvement of the electronic and optical properties of the GaAs surface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Pb1-xLaxTiO3 sintered ferroelectric ceramics with x equal to 0, 0.10, 0.15, 0.20, and 0.30 were studied by X-ray photoelectron spectroscopy (XPS). The binding energy of the Ti 2p lines is consistent with only one chemical state, Ti4+. on the other hand, in the case of Pb 4f and 0 Is XPS spectra, apart from the main peaks attributed to the lattice ions, minor peaks related to the surface states were also observed. The presence of Pb-0 state on the surface of all samples was due to the reduction of lead ions caused by the preferential removal of the oxygen ions after sputtering. The non observation of Ti3+ ions confirms that the mechanism of charge compensation that should occurs owing to the substitution of Ph2+ by La3+ is due to the preferential formation of Pb site vacancies, and not to a reduction from Ti4+ to Ti3+ states. Within the limits of the present experiment, there is no evidence of the existence of non-equivalent Pb, Ti, and La sites as the Pb1-xLaxTiO3 ceramic changes from a normal to a relaxor ferroelectric state. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report cross sections for elastic electron scattering by gas phase glycine (neutral form), obtained with the Schwinger multichannel method. The present results are the first obtained with a new implementation that combines parallelization with OpenMP directives and pseudopotentials. The position of the well known pi* shape resonance ranged from 2.3 eV to 2.8 eV depending on the polarization model and conformer. For the most stable isomer, the present result (2.4 eV) is in fair agreement with electron transmission spectroscopy assignments (1.93 +/- 0.05 eV) and available calculations. Our results also point out a shape resonance around 9.5 eV in the A' symmetry that would be weakly coupled to vibrations of the hydroxyl group. Since electron attachment to a broad and lower lying sigma* orbital located on the OH bond has been suggested the underlying mechanism leading to dissociative electron attachment at low energies, we sought for a shape resonance around similar to 4 eV. Though we obtained cross sections with the target molecule at the equilibrium geometry and with stretched OH bond lengths, least-squares fits to the calculated eigenphase sums did not point out signatures of this anion state (though, in principle, it could be hidden in the large background). The low energy (similar to 1 eV) integral cross section strongly scales as the bond length is stretched, and this could indicate a virtual state pole, since dipole supported bound states are not expected at the geometries addressed here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3687345]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Photo-electron spectroscopy as an analytical tool has only received limited interest in the field of mineral science. Photo-electron spectroscopy, together with Auger electron spectroscopy, gives information about the positions of the energy levels in atoms or molecules. Application of this technique on solid materials will result in information of the band structure of these materials. The principle of photo electron spectroscopy is rather simple: photons with certain energy (wavelength) are allowed to collide with an atom, molecule or a solid material. These photons can then interact with electrons present in the atoms and one of these electrons can be excited from its orbital resulting in a situation similar to a free electron plus a positively charged atom or molecule.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A detailed investigation has been undertaken into a field-induced electron emission (FIEE) mechanism that occurs at microscopically localised `sites' on uncoated, dielectric-coated and composite-coated metallic cathodes. An optical imaging technique has been used to observe and characterize the spatial and temporal behaviour of the populations of emission sites on these cathodes under various experimental conditions, e.g. pulsed-fields, gas environment etc. This study has shown that, for applied fields of 20MVm^-1, thin dielectric (750AA) and composite metal-insulator (MI) overlayers result in a dramatic increase in the total number of emission sites (typically 30cm^-2), and hence emission current. The emission process has been further investigated by a complementary electron spectroscopy technique which has revealed that the localised emission sites on these cathodes display field-dependent spectral shifts and half-widths, i.e. indicative of a `non-metallic' emission mechanism. Details are also given of a comprehensive investigation into the effects of the residual gas environment on the FIEE process from uncoated Cu-cathodes. This latter study has revealed that the well-known Gas Conditioning process can be performed with a wide range of gas species (e.g. O_2, N_2 etc), and furthermore, the degree of conditioning is influenced by both a `Voltage' and `Temperature' effect. These experimental findings have been shown to be particularly important to the technology of high-voltage vacuum-insulation and cold-cathode electron sources. The FIEE mechanism has been interpreted in terms of a hot-electron process that is associated with `electroformed' conducting channels in MI, MIM and MIMI surface microstructures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dans ce projet de recherche, le dépôt des couches minces de carbone amorphe (généralement connu sous le nom de DLC pour Diamond-Like Carbon en anglais) par un procédé de dépôt chimique en phase vapeur assisté par plasma (ou PECVD pour Plasma Enhanced Chemical Vapor deposition en anglais) a été étudié en utilisant la Spectroscopie d’Émission Optique (OES) et l’analyse partielle par régression des moindres carrés (PLSR). L’objectif de ce mémoire est d’établir un modèle statistique pour prévoir les propriétés des revêtements DLC selon les paramètres du procédé de déposition ou selon les données acquises par OES. Deux séries d’analyse PLSR ont été réalisées. La première examine la corrélation entre les paramètres du procédé et les caractéristiques du plasma pour obtenir une meilleure compréhension du processus de dépôt. La deuxième série montre le potentiel de la technique d’OES comme outil de surveillance du procédé et de prédiction des propriétés de la couche déposée. Les résultats montrent que la prédiction des propriétés des revêtements DLC qui était possible jusqu’à maintenant en se basant sur les paramètres du procédé (la pression, la puissance, et le mode du plasma), serait envisageable désormais grâce aux informations obtenues par OES du plasma (particulièrement les indices qui sont reliées aux concentrations des espèces dans le plasma). En effet, les données obtenues par OES peuvent être utilisées pour surveiller directement le processus de dépôt plutôt que faire une étude complète de l’effet des paramètres du processus, ceux-ci étant strictement reliés au réacteur plasma et étant variables d’un laboratoire à l’autre. La perspective de l’application d’un modèle PLSR intégrant les données de l’OES est aussi démontrée dans cette recherche afin d’élaborer et surveiller un dépôt avec une structure graduelle.