998 resultados para Electrochemical potentiokinetic reactivation (EPR) tests


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An assay procedure utilizing pulsed amperometric detection at a platinum-particles modified electrode has been developed for the determination of cysteine and glutathione in blood samples following preliminary separation by reversed-phase liquid chromatography. A chemically modified electrode (CME) constructed by unique electroreduction from a platinum-salt solution to produce dispersed Pt particles on a glassy carbon surface was demonstrated to catalyze the electo-oxidation of sulfhydryl-containing compounds: DL-cysteine (CYS), reduced glutathione (GSH). When used as the sensing electrode in flow-system pulsed-amperometric detection (PAD), electrode fouling could be avoided using a waveform in which the cathodic reactivation process occurred at a potential of - 1.0 V vs. Ag/AgCl to achieve a cathodic desorption of atomic sulfur. A superior detection limit for these free thiols was obtained at a Pt particle-based GC electrode compared with other methods; this novel dispersed Pt particles CME exhibited high electrocatalytic stability and activity when it was employed as an electrochemical detector in FIA and HPLC for the determination of those organo-sulfur compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purines and its derivatives, such as, guanine, adenine, 2,6-diaminopurine, 6-thioguanine and 2,6-dithiopurine, were investigated as corrosion inhibitors for mild steel in 1 M HCl solution by weight loss measurements, electrochemical tests and quantum chemical calculations. The polarization curves of mild steel in the hydrochloric acid solutions of the purines showed that both cathodic and anodic processes of steel corrosion were suppressed. The Nyquist plots of impedance expressed mainly as a depressed capacitive loop with different compounds and concentrations. For all these purines, the inhibition efficiency increased by increasing the inhibitor concentration, and the inhibition efficiency orders are 2,6-dithiopurine > 6-thioguanine > 2,6-diaminopurine > adenine > guanine with the highest inhibiting efficiency of 88.0% for 10(-3) M 2,6-dithiopurine. The optimized structures of purines, the Mulliken charges, molecular orbital densities and relevant parameters were calculated by quantum chemical calculations. The quantum chemical calculation results inferred that the adsorption belong to physical adsorption, which might arise from the pi stacking between the pi electron of the purines and the metal surface. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Widespread adoption of lead-free materials and processing for printed circuit board (PCB) assembly has raised reliability concerns regarding surface insulation resistance (SIR) degradation and electrochemical migration (ECM). As PCB conductor spacings decrease, electronic products become more susceptible to these failures mechanisms, especially in the presence of surface contamination and flux residues which might remain after no-clean processing. Moreover, the probability of failure due to SIR degradation and ECM is affected by the interaction between physical factors (such as temperature, relative humidity, electric field) and chemical factors (such as solder alloy, substrate material, no-clean processing). Current industry standards for assessing SIR reliability are designed to serve as short-term qualification tests, typically lasting 72 to 168 hours, and do not provide a prediction of reliability in long-term applications. The risk of electrochemical migration with lead-free assemblies has not been adequately investigated. Furthermore, the mechanism of electrochemical migration is not completely understood. For example, the role of path formation has not been discussed in previous studies. Another issue is that there are very few studies on development of rapid assessment methodologies for characterizing materials such as solder flux with respect to their potential for promoting ECM. In this dissertation, the following research accomplishments are described: 1). Long-term temp-humidity-bias (THB) testing over 8,000 hours assessing the reliability of printed circuit boards processed with a variety of lead-free solder pastes, solder pad finishes, and substrates. 2). Identification of silver migration from Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder, which is a completely new finding compared with previous research. 3). Established the role of path formation as a step in the ECM process, and provided clarification of the sequence of individual steps in the mechanism of ECM: path formation, electrodeposition, ion transport, electrodeposition, and filament formation. 4). Developed appropriate accelerated testing conditions for assessing the no-clean processed PCBs' susceptibility to ECM: a). Conductor spacings in test structures should be reduced in order to reflect the trend of higher density electronics and the effect of path formation, independent of electric field, on the time-to-failure. b). THB testing temperatures should be modified according to the material present on the PCB, since testing at 85oC can cause the evaporation of weak organic acids (WOAs) in the flux residues, leading one to underestimate the risk of ECM. 5). Correlated temp-humidity-bias testing with ion chromatography analysis and potentiostat measurement to develop an efficient and effective assessment methodology to characterize the effect of no-clean processing on ECM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The applicability of ionic liquids within the nuclear industry has been investigated. The radiation stability of ionic liquids containing dialkylimidazolium cations has been tested through with alpha, beta and gamma irradiation. The results of these tests suggest that imidazolium salts have stabilities similar to alkylbenzenes and greater than tetrabutylphosphate / odorless kerosene (TBP/OK) mixtures. The oxidative dissolution of uranium dioxide and the anodic dissolution of uranium metal and plutonium metal have been carried out in various ionic liquid media (C) 2002 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper brings together and analyzes recent work based on the interpretation of the electrochemical measurements made on a modified micro-abrasion-corrosion tester used in several research programmes. These programmes investigated the role of abradant size, test solution pH in abrasion-corrosion of biomaterials, the abrasion-corrosion performance of sintered and thermally sprayed tungsten carbide surfaces under downhole drilling environments and the abrasion-corrosion of UNS S32205 duplex stainless steel. Various abrasion tests were conducted under two-body grooving, three-body rolling and mixed grooving-rolling abrasion conditions, with and without abrasives, on cast F75 cobalt-chromium-molybdenum (CoCrMo) alloy in simulated body fluids, 2205 in chloride containing solutions as well as sprayed and sintered tungsten carbide surfaces in simulated downhole fluids. Pre- and post-test inspections based on optical and scanning electron microscopy analysis are used to help interpret the electrochemical response and current noise measurements made in situ during micro-abrasion-corrosion tests. The complex wear and corrosion mechanisms and their dependence on the microstructure and surface composition as a function of the pH, abrasive concentration, size and type are detailed and linked to the electrochemical signals. The electrochemical versus mechanical processes are plotted for different test parameters and this new approach is used to interpret tribo-corrosion test data to give greater insights into different tribo-corrosion systems. Thus new approaches to interpreting in-situ electrochemical responses to surfaces under different abrasive wear rates, different abrasives and liquid environments (pH and NaCl levels) are made. This representation is directly related to the mechano-electrochemical processes on the surface and avoids quantification of numerous synergistic, antagonistic and additive terms associated with repeat experiments. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes an electrochemical and quantum chemical investigation of the fipronil insecticide. Cyclic voltammetry (CV) and square wave voltammetry (SWV) experiments were performed over a graphite-polyurethane (GPU) composite electrode. The fipronil molecule presents an one?electron irreversible oxidation reaction. Profiting the SWV signal a square wave stripping voltammetry (SWSV) procedure to determine the fipronil molecule in a 0.10 mol L-1 Britton-Robinson buffer solution, pH 8.0 was developed with accumulation potential and time of 0.50 V and 120 s, respectively. The limits of detection and quantification were 0.80 and 2.67 ?g L-1, respectively. Recovery tests were performed in three natural waters samples with values ranging from 99.67 to 101.37%. Quantum chemical studies showed that the nitrogen atom of the pyrazole group is the most probable oxidation site of the fipronil molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IR, UV-vis, and EPR spectroelectrochemistry at variable temperatures and in different solvents were applied to investigate in situ the formation of electroactive molecular chains with a nonbridged Os-Os backbone, in particular, the polymer [Os-0(bpy)(CO)(2)](n), (bpy = 2,2'-bipyridine), from a mononuclear Os(II) carbonyl precursor, [Os-II(bpy)(CO)(2)Cl-2]. The one-electron-reduced form, [Os-II(bpy(.-))(CO)(2)Cl-2](-), has been characterized spectroscopically at low temperatures. This radical anion is the key intermediate in the electrochemical propagation process responsible for the metal-metal bond formation. Unambiguous spectroscopic evidence has been gained also for the formation of [{Os-0(bpy(.-))(CO)(2)}(-)](n), the electron-rich electrocatalyst of CO2 reduction. The polymer species are fairly well soluble in butyronitrile, which is important for their potential utilization in nanoscience, for example, as conducting molecular wires. We have also shown that complete solubility is accomplished for the monocarbonyl-acetonitrile derivative of the polymer, [Os-0(bpy)(CO)(MeCN)(2)Cl](n).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work reports the chemistry of a few oxidovanadium(IV) and (V) complexes of the ONS chelating ligand S-benzyl-beta-N-(2-hydroxyphenylethylidine) dithiocarbazate (H2L). Major objective of this work is to arrive at some general conclusions about the influence of binding environment generated by the replacement of an O-donor center by a S-donor point in a ligand (of a similar arrangement of the other O- and N-donor points) on the redox behavior and on the structural features of comparable [VO(OEt)(ONS)] and [VO(OEt)(ONO)] complexes. Synthesis, characterization by various physicochemical techniques (UV-Vis, IR, EPR and elemental analysis), exploration of electrochemical activity of the oxidovanadium(V) complex [(VO)-O-V(OEt) L] (1), the mixed ligand complex [(VO)-O-V(N-O)L] (3) (where N-O is the mono anion of 8-hydroxyquinoline) and a binuclear complex [(VO)-O-V(OEt)L](2)(mu-4,4'-bipy) (2) are reported. Similar studies on of mixed ligand oxidovanadium(IV) complexes of the formula [(VO)-O-V(N-N)L] (4,5) (where N-N = 2,2'-bipy and o-phen) are also presented here. The [(VO)-O-V(OEt)L] complex is pentacoordinated and distorted square pyramidal, while the [V-IV(N-N)L] complexes are hexacoordinated and octahedral. Structural features of the complex 1 were compared with the corresponding aspects of the previously reported analogous complex [(VO)-O-V(OEt)(ONO)] (1').

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A square-planar compound [Cu(pyrimol)Cl] (pyrimol = 4-methyl-2-N-(2-pyridylmethylene)aminophenolate) abbreviated as CuL–Cl) is described as a biomimetic model of the enzyme galactose oxidase (GOase). This copper(II) compound is capable of stoichiometric aerobic oxidation of activated primary alcohols in acetonitrile/water to the corresponding aldehydes. It can be obtained either from Hpyrimol (HL) or its reduced/hydrogenated form Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol; H2L) readily converting to pyrimol (L-) on coordination to the copper(II) ion. Crystalline CuL–Cl and its bromide derivative exhibit a perfect square-planar geometry with Cu–O(phenolate) bond lengths of 1.944(2) and 1.938(2) Å. The cyclic voltammogram of CuL–Cl exhibits an irreversible anodic wave at +0.50 and +0.57 V versus ferrocene/ferrocenium (Fc/Fc+) in dry dichloromethane and acetonitrile, respectively, corresponding to oxidation of the phenolate ligand to the corresponding phenoxyl radical. In the strongly donating acetonitrile the oxidation path involves reversible solvent coordination at the Cu(II) centre. The presence of the dominant CuII–L. chromophore in the electrochemically and chemically oxidised species is evident from a new fairly intense electronic absorption at 400–480 nm ascribed to a several electronic transitions having a mixed pi-pi(L.) intraligand and Cu–Cl -> L. charge transfer character. The EPR signal of CuL–Cl disappears on oxidation due to strong intramolecular antiferromagnetic exchange coupling between the phenoxyl radical ligand (L.) and the copper(II) centre, giving rise to a singlet ground state (S = 0). The key step in the mechanism of the primary alcohol oxidation by CuL–Cl is probably the alpha-hydrogen abstraction from the equatorially bound alcoholate by the phenoxyl moiety in the oxidised pyrimol ligand, Cu–L., through a five-membered cyclic transition state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion resistance of Ti and Ti-6Al-4V was investigated through electrochemical impedance spectroscopy, EIS, potentiodynamic polarisation curves and UV-Vis spectrophotometry. The tests were done in Hank solution at 25 degrees C and 37 degrees C. The EIS measurements were done at the open circuit potential at specific immersion times. An increase of the resistance as a function of the immersion time was observed, for Ti (at 25 degrees C and 37 degrees C), and for Ti-6Al-4V (at 25 degrees C), which was interpreted as the formation and growth of a passive film on the metallic surfaces. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behavior of ISO 5832-9 stainless steel at 37 degrees C in 0.9% NaCl, Ringer Lactate and minimum essential medium (MEM) has been studied, using linear voltammetry, and surface analysis by SEM and EDS. Mechanical and toxicity tests were made. ISO 5832-9 is passivated at corrosion potential (E) and it does not present pitting corrosion on the media studied from to 50 in V above the transpassivation potential (Ei). SEM and EDS analysis have shown that the sample previously immersed in MEM presents a diffirent behavior at 50 in V above El: the manganese oxide inclusions are absent in the surface. E. values and passivation current density values j(pass) changed according to the following. E(corr, RL) < E(corr,NaCl) < E(corr, MEM) and J (MEM) << j(RL) congruent to j(NaCl) The stainless steel was characterized as non toxic in the cytotoxicity assay

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resonance Raman, FTIR, X-ray diffraction, UV-vis-NIR, electron paramagnetic resonance, X-ray absorption at Si K-edge and electron microscopy were employed for characterizing the products formed through electrochemical oxidation of intercalated anilinium ions inside the cationic montmorillonite (MMT) clay. The layer silicate structure was not affected by the anilinium oxidation between the layers. The intercalated products present only an electronic absorption band at 400 nm, very low conductivity (ca. 10(-7) S cm(-1)) and their Raman spectrum displays bands, with high relative intensities, assigned to the benzidine dication, indicating that this product was formed in high amount. Nevertheless, bands that can be correlated to phenazine-like segments and 1,4-phenylenediamine repeat units (PANI like segments) are also observed. The very low EPR signal indicates that diamagnetic species are predominant. All results are compared to those obtained by anilinium-MMT chemically oxidized by persulfate and the differences are pointed out. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H(2),similar to 20% N(2), and 8 ppm hydrogen sulfide (H(2)S). Cell performance losses are calculated by evaluating cell potential reduction due to H(2)S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H(2)S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H(2)S-contaminated anode feeding stream. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although metal dithiocarbamate complexes have been studied extensively, there is in sate cases a distinct lack of data concerning redox properties and the products thereof. This is particularly true for complexes of the late transition and main group metals which are important in agriculture, industry, and chemical analysis. Hence, using electrochemical techniques, the redox behaviour of dithiocarbamate complexes of zinc, cadmium, mercury, lead, and tellurium has been examined. The products of oxidation and reduction have also been characterized by spectroscopic techniques (NMR, EPR, UV, and IR), mass spectrometry, conductivity, and Where possible, crystallographic study of an isolated compound. The species studied were without exception labile with the result that electrochemistry at mercury electrodes was influenced by the great stability of the mercury dithiocarbamate (Hg(RR’dtc) 2) complexes. Investigation of the latter showed that oxidative processes in the presence of mercury led to a new class of expounds: polymeric mercury dithiocarbamato cations. Oily one of these could be isolated as a solid, with the formula [Hg5(RR’dtc) 8](C104)2 For R=R’=ethyl the crystal structure was determined. For other metal dithiocarbamates the electrochemical behaviour at mercury electrodes in many ways paralleled that of the mercury analogues. Thus oxidative processes involved oxidation of electrode mercury to form mixed metal cationic species. Polarographic reduction led to the metal amalgam, usually via formation of mercury dithiocarbamate. Electrochemical studies at inert electrode materials such as platinum yielded distinctly different responses, with both oxidation and reduction being more difficult. Oxidation products at platinum electrodes gave identical polarographic responses to those firm mercury electrodes due to rapid interaction of the former with electrode mercury. The results are in sharp contrast to much of the previous work on transition metal dithiocarbamates for which electrochemical redox processes are often metal based arid not explicated by interaction with the electrode material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of the species in solution plays a major role on the effectiveness of the corrosion inhibitor on a steel substrate. The speciation of lanthanum 4-hydroxy cinnamate (La(4OHCin) 3) in solution has been evaluated using experimental techniques composed of potentiodynamic polarisation, immersion tests, nuclear magnetic spectroscopy and mass spectroscopy. It is evident that the species in solution are dependent on pH and this impacts the corrosion inhibition mechanism and the efficiency. It was found that at a neutral pH of 5.5 the La(4OH-Cin)3 behaves as a strong anodic inhibitor. Whereas, when the pH shifts to low (pH2.5) and/or high (pH8) the corrosion mechanism changes.