874 resultados para Electricity Demand, Causality, Cointegration Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the effects of the terms of trade and the expected real interest rate differential on the real exchange rate in a sample of small open developed economies. We employ cointegration analysis to search for possible long-term linkages. We find that while both the terms of trade and the expected real interest rate differentials affect the real exchange rate in the long run, the role of the terms of trade generally proves more consistent across countries. The speed of adjustment for the expected real interest rate differential in the error-correction model, however, is quantitatively larger than it is for the terms of trade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the legal feasibility of different design options for implementing a differentiated electricity tax based on renewable energy (RE) certificates aimed at promoting green electricity generation. It discusses the issue of likeness in light of the recent WTO jurisprudence and looks at the possibility of justification of differentiated tax rates under the general exceptions of the GATT. It also scrutinizes the potential legal hurdles for the implementation of different tax design options including the use of certificates for RE tax exemption. It argues that the placing of a quota on the number of foreign RE certificates eligible for tax exemptions would likely affect the volumes of imported green electricity and therefore trigger a violation of GATT rules. At the same time, restrictions on the eligibility of RE certificates might be defended under WTO law if they are based on qualitative criteria, such as the attachment of RE certificates to green electricity flows or to a green electricity label that is equally available to domestic and foreign suppliers of RE electricity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroencephalographic (EEG) signals of the human brains represent electrical activities for a number of channels recorded over a the scalp. The main purpose of this thesis is to investigate the interactions and causality of different parts of a brain using EEG signals recorded during a performance subjects of verbal fluency tasks. Subjects who have Parkinson's Disease (PD) have difficulties with mental tasks, such as switching between one behavior task and another. The behavior tasks include phonemic fluency, semantic fluency, category semantic fluency and reading fluency. This method uses verbal generation skills, activating different Broca's areas of the Brodmann's areas (BA44 and BA45). Advanced signal processing techniques are used in order to determine the activated frequency bands in the granger causality for verbal fluency tasks. The graph learning technique for channel strength is used to characterize the complex graph of Granger causality. Also, the support vector machine (SVM) method is used for training a classifier between two subjects with PD and two healthy controls. Neural data from the study was recorded at the Colorado Neurological Institute (CNI). The study reveals significant difference between PD subjects and healthy controls in terms of brain connectivities in the Broca's Area BA44 and BA45 corresponding to EEG electrodes. The results in this thesis also demonstrate the possibility to classify based on the flow of information and causality in the brain of verbal fluency tasks. These methods have the potential to be applied in the future to identify pathological information flow and causality of neurological diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the impact that electric vehicle uptake will have on the national electricity demand of Great Britain. Data from the National Travel Survey, and the Coventry and Birmingham Low Emissions Demonstration (CABLED) are used to model an electrical demand profile in a future scenario of significant electric vehicle market penetration. These two methods allow comparison of how conventional cars are currently used, and the resulting electrical demand with simple substitution of energy source, with data showing how electric vehicles are actually being used at present. The report finds that electric vehicles are unlikely to significantly impact electricity demand in GB. The paper also aims to determine whether electric vehicles have the potential to provide ancillary services to the grid operator, and if so, the capacity for such services that would be available. Demand side management, frequency response and Short term Operating Reserve (STOR) are the services considered. The report finds that electric cars are unlikely to provide enough moveable demand peak shedding to be worthwhile. However, it is found that controlling vehicle charging would provide sufficient power control to viably act as frequency response for dispatch by the transmission system operator. This paper concludes that electric vehicles have technical potential to aid management of the transmission network without adding a significant demand burden. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation I quantify residential behavior response to interventions designed to reduce electricity demand at different periods of the day. In the first chapter, I examine the effect of information provision coupled with bimonthly billing, monthly billing, and in-home displays, as well as a time-of-use (TOU) pricing scheme to measure consumption over each month of the Irish Consumer Behavior Trial. I find that time-of-use pricing with real time usage information reduces electricity usage up to 8.7 percent during peak times at the start of the trial but the effect decays over the first three months and after three months the in-home display group is indistinguishable from the monthly treatment group. Monthly and bi-monthly billing treatments are not found to be statistically different from another. These findings suggest that increasing billing reports to the monthly level may be more cost effective for electricity generators who wish to decrease expenses and consumption, rather than providing in-home displays. In the following chapter, I examine the response of residential households after exposure to time of use tariffs at different hours of the day. I find that these treatments reduce electricity consumption during peak hours by almost four percent, significantly lowering demand. Within the model, I find evidence of overall conservation in electricity used. In addition, weekday peak reductions appear to carry over to the weekend when peak pricing is not present, suggesting changes in consumer habit. The final chapter of my dissertation imposes a system wide time of use plan to analyze the potential reduction in carbon emissions from load shifting based on the Ireland and Northern Single Electricity Market. I find that CO2 emissions savings are highest during the winter months when load demand is highest and dirtier power plants are scheduled to meet peak demand. TOU pricing allows for shifting in usage from peak usage to off peak usage and this shift in load can be met with cleaner and cheaper generated electricity from imports, high efficiency gas units, and hydro units.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the impact of the CO2 opportunity cost on the wholesale electricity price in the context of the Iberian electricity market (MIBEL), namely on the Portuguese system, for the period corresponding to the Phase II of the European Union Emission Trading Scheme (EU ETS). In the econometric analysis a vector error correction model (VECM) is specified to estimate both long–run equilibrium relations and short–run interactions between the electricity price and the fuel (natural gas and coal) and carbon prices. The model is estimated using daily spot market prices and the four commodities prices are jointly modelled as endogenous variables. Moreover, a set of exogenous variables is incorporated in order to account for the electricity demand conditions (temperature) and the electricity generation mix (quantity of electricity traded according the technology used). The outcomes for the Portuguese electricity system suggest that the dynamic pass–through of carbon prices into electricity prices is strongly significant and a long–run elasticity was estimated (equilibrium relation) that is aligned with studies that have been conducted for other markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing energy consumption in the residential sector represents about 30% of global demand. This calls for Demand Side Management solutions propelling change in behaviors of end consumers, with the aim to reduce overall consumption as well as shift it to periods in which demand is lower and where the cost of generating energy is lower. Demand Side Management solutions require detailed knowledge about the patterns of energy consumption. The profile of electricity demand in the residential sector is highly correlated with the time of active occupancy of the dwellings; therefore in this study the occupancy patterns in Spanish properties was determined using the 2009–2010 Time Use Survey (TUS), conducted by the National Statistical Institute of Spain. The survey identifies three peaks in active occupancy, which coincide with morning, noon and evening. This information has been used to input into a stochastic model which generates active occupancy profiles of dwellings, with the aim to simulate domestic electricity consumption. TUS data were also used to identify which appliance-related activities could be considered for Demand Side Management solutions during the three peaks of occupancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years the electricity industry has faced a restructuring process. Among the aims of this process was the increase in competition, especially in the generation activity where firms would have an incentive to become more efficient. However, the competitive behavior of generating firms might jeopardize the expected benefits of the electricity industry liberalization. The present paper proposes a conjectural variations model to study the competitive behavior of generating firms acting in liberalized electricity markets. The model computes a parameter that represents the degree of competition of each generating firm in each trading period. In this regard, the proposed model provides a powerful methodology for regulatory and competition authorities to monitor the competitive behavior of generating firms. As an application of the model, a study of the day-ahead Iberian electricity market (MIBEL) was conducted to analyze the impact of the integration of the Portuguese and Spanish electricity markets on the behavior of generating firms taking into account the hourly results of the months of June and July of 2007. The advantages of the proposed methodology over other methodologies used to address market power, namely Residual Supply index and Lerner index are highlighted. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contextualization is critical in every decision making process. Adequate responses to problems depend not only on the variables with direct influence on the outcomes, but also on a correct contextualization of the problem regarding the surrounding environment. Electricity markets are dynamic environments with increasing complexity, potentiated by the last decades' restructuring process. Dealing with the growing complexity and competitiveness in this sector brought the need for using decision support tools. A solid example is MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), whose players' decisions are supported by another multiagent system – ALBidS (Adaptive Learning strategic Bidding System). ALBidS uses artificial intelligence techniques to endow market players with adaptive learning capabilities that allow them to achieve the best possible results in market negotiations. This paper studies the influence of context awareness in the decision making process of agents acting in electricity markets. A context analysis mechanism is proposed, considering important characteristics of each negotiation period, so that negotiating agents can adapt their acting strategies to different contexts. The main conclusion is that context-dependant responses improve the decision making process. Suiting actions to different contexts allows adapting the behaviour of negotiating entities to different circumstances, resulting in profitable outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project the direct rebound effect for the electricity demand in Portugal. While we find evidence of such an effect, the estimations also reflect the institutional arrangement that has characterized the electricity market in the country. Also, issues related to energy efficiency promotion are addressed in general putting into context the case study developed.