899 resultados para Electrical power system stability
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work presents the application of the Decentralized Modal Control method for pole placement in multimachine power systems utilizing FACTS (Flexible AC Transmission Systems), STATCOM (Static Synchronous Compensator) and UPFC (Unified Power Flow Controller) devices. For this, these devices are equipped with supplementary damping controllers, denominated POD ( Power Oscillation Damping), achieving a coordinated project with local controllers (Power System Stabilizers - PSS). Comparative analysis on the function of damping of the FACTS, STATCOM and UPFC is performed using the New England System that has 10 generators, 39 buses and 46 transmission lines. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The power system stability analysis is approached taking into explicit account the dynamic performance of generators internal voltages and control devices. The proposed method is not a direct method in the usual sense since conclusion for stability or instability is not exclusively based on energy function considerations but it is automatic since the conclusion is achieved without an analyst intervention. The stability test accounts for the nonconservative nature of the system with control devices such as the automatic voltage regulator (AVR) and automatic generation control (AGC) in contrast with the well-known direct methods. An energy function is derived for the system with machines forth-order model, AVR and AGC and it is used to start the analysis procedure and to point out criticalities. The conclusive analysis itself is made by means of a method based on the definition of a region surrounding the equilibrium point where the system net torque is equilibrium restorative. This region is named positive synchronization region (PSR). Since the definition of the PSR boundaries have no dependence on modelling approximation, the PSR test conduces to reliable results. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the subject-matter of teaching immaterial issues like power system dynamics where the phenomena and events are not sense-perceptible. The dynamics of the power system are recognized as analogous to the dynamics of a simple mechanical pendulum taken into account the well-known classical model for the synchronous machine. It is shown that even for more sophisticated models including flux decay and Automatic Voltage Regulator the mechanical device can be taken as an analogous, since provided some considerations about variation and control of the pendulum length using certain control laws. The resulting mathematical model represents a mechanical system that can be built for use in laboratory teaching of power system dynamics. © 2010 Praise Worthy Prize S.r.l. - All rights reserved.
Resumo:
This paper presents a distribution feeder simulation using VHDL-AMS, considering the standard IEEE 13 node test feeder admitted as an example. In an electronic spreadsheet all calculations are performed in order to develop the modeling in VHDL-AMS. The simulation results are compared in relation to the results from the well knowing MatLab/Simulink environment, in order to verify the feasibility of the VHDL-AMS modeling for a standard electrical distribution feeder, using the software SystemVision™. This paper aims to present the first major developments for a future Real-Time Digital Simulator applied to Electrical Power Distribution Systems. © 2012 IEEE.
Singular value analyses of voltage stability on power system considering wind generation variability
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
This work presents the application of Linear Matrix Inequalities to the robust and optimal adjustment of Power System Stabilizers with pre-defined structure. Results of some tests show that gain and zeros adjustments are sufficient to guarantee robust stability and performance with respect to various operating points. Making use of the flexible structure of LMI's, we propose an algorithm that minimizes the norm of the controllers gain matrix while it guarantees the damping factor specified for the closed loop system, always using a controller with flexible structure. The technique used here is the pole placement, whose objective is to place the poles of the closed loop system in a specific region of the complex plane. Results of tests with a nine-machine system are presented and discussed, in order to validate the algorithm proposed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this paper is to provide performance metrics for small-signal stability assessment of a given system architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC) derived from the behavior of an impedance-based sensitivity function. For each minor-loop gain defined at every system interface, a single number to state the robustness of stability is provided based on the computed maximum value of the corresponding sensitivity function. In order to compare various power-architecture solutions in terms of stability, a parameter providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system. It provides a meaningful metrics for system comparisons: the best system in terms of robust stability is the one that minimizes this index. In addition, the largest peak value within the system interfaces is given thus detecting the weakest point of the system in terms of robustness.
Resumo:
The optimization of power architectures is a complex problem due to the plethora of different ways to connect various system components. This issue has been addressed by developing a methodology to design and optimize power architectures in terms of the most fundamental system features: size, cost and efficiency. The process assumes various simplifications regarding the utilized DC/DC converter models in order to prevent the simulation time to become excessive and, therefore, stability is not considered. The objective of this paper is to present a simplified method to analyze small-signal stability of a system in order to integrate it into the optimization methodology. A black-box modeling approach, applicable to commercial converters with unknown topology and components, is based on frequency response measurements enabling the system small-signal stability assessment. The applicability of passivity-based stability criterion is assessed. The stability margins are stated utilizing a concept of maximum peak criteria derived from the behavior of the impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain.
Resumo:
The objective of this paper is to present a simplified method to analyze small-signal stability of a power system and provide performance metrics for stability assessment of a given power-system-architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC), derived from the behavior of an impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain. For each minor-loop gain, defined at every system interface, the robustness of the stability is provided as a maximum value of the corresponding sensitivity function. Typically power systems comprise of various interfaces and, therefore, in order to compare different architecture solutions in terms of stability, a single number providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system, combined with the worst case value of system interfaces.