932 resultados para Electrical impedance spectrocopy
Resumo:
Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112: 225-236, 2012. First published September 29, 2011; doi: 10.1152/japplphysiol.01090.2010.-The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.
Resumo:
In this work we study localized electric potentials that have an arbitrarily high energy on some given subset of a domain and low energy on another. We show that such potentials exist for general L-infinity-conductivities (with positive infima) in almost arbitrarily shaped subregions of a domain, as long as these regions are connected to the boundary and a unique continuation principle is satisfied. From this we deduce a simple, but new, theoretical identifiability result for the famous Calderon problem with partial data. We also show how to construct such potentials numerically and use a connection with the factorization method to derive a new non-iterative algorithm for the detection of inclusions in electrical impedance tomography.
Resumo:
In electrical impedance tomography, one tries to recover the conductivity inside a physical body from boundary measurements of current and voltage. In many practically important situations, the investigated object has known background conductivity but it is contaminated by inhomogeneities. The factorization method of Andreas Kirsch provides a tool for locating such inclusions. Earlier, it has been shown that under suitable regularity conditions positive (or negative) inhomogeneities can be characterized by the factorization technique if the conductivity or one of its higher normal derivatives jumps on the boundaries of the inclusions. In this work, we use a monotonicity argument to generalize these results: We show that the factorization method provides a characterization of an open inclusion (modulo its boundary) if each point inside the inhomogeneity has an open neighbourhood where the perturbation of the conductivity is strictly positive (or negative) definite. In particular, we do not assume any regularity of the inclusion boundary or set any conditions on the behaviour of the perturbed conductivity at the inclusion boundary. Our theoretical findings are verified by two-dimensional numerical experiments.
Resumo:
Introduction Electrical impedance tomography (EIT) has been shown to be able to distinguish both ventilation and perfusion. With adequate filtering the regional distributions of both ventilation and perfusion and their relationships could be analysed. Several methods of separation have been suggested previously, including breath holding, electrocardiograph (ECG) gating and frequency filtering. Many of these methods require interventions inappropriate in a clinical setting. This study therefore aims to extend a previously reported frequency filtering technique to a spontaneously breathing cohort and assess the regional distributions of ventilation and perfusion and their relationship. Methods Ten healthy adults were measured during a breath hold and while spontaneously breathing in supine, prone, left and right lateral positions. EIT data were analysed with and without filtering at the respiratory and heart rate. Profiles of ventilation, perfusion and ventilation/perfusion related impedance change were generated and regions of ventilation and pulmonary perfusion were identified and compared. Results Analysis of the filtration technique demonstrated its ability to separate the ventilation and cardiac related impedance signals without negative impact. It was, therefore, deemed suitable for use in this spontaneously breathing cohort. Regional distributions of ventilation, perfusion and the combined ΔZV/ΔZQ were calculated along the gravity axis and anatomically in each position. Along the gravity axis, gravity dependence was seen only in the lateral positions in ventilation distribution, with the dependent lung being better ventilated regardless of position. This gravity dependence was not seen in perfusion. When looking anatomically, differences were only apparent in the lateral positions. The lateral position ventilation distributions showed a difference in the left lung, with the right lung maintaining a similar distribution in both lateral positions. This is likely caused by more pronounced anatomical changes in the left lung when changing positions. Conclusions The modified filtration technique was demonstrated to be effective in separating the ventilation and perfusion signals in spontaneously breathing subjects. Gravity dependence was seen only in ventilation distribution in the left lung in lateral positions, suggesting gravity based shifts in anatomical structures. Gravity dependence was not seen in any perfusion distributions.
Resumo:
Background A recent method determines regional gas flow of the lung by electrical impedance tomography (EIT). The aim of this study is to show the applicability of this method in a porcine model of mechanical ventilation in healthy and diseased lungs. Our primary hypothesis is that global gas flow measured by EIT can be correlated with spirometry. Our secondary hypothesis is that regional analysis of respiratory gas flow delivers physiologically meaningful results. Methods In two sets of experiments n = 7 healthy pigs and n = 6 pigs before and after induction of lavage lung injury were investigated. EIT of the lung and spirometry were registered synchronously during ongoing mechanical ventilation. In-vivo aeration of the lung was analysed in four regions-of-interest (ROI) by EIT: 1) global, 2) ventral (non-dependent), 3) middle and 4) dorsal (dependent) ROI. Respiratory gas flow was calculated by the first derivative of the regional aeration curve. Four phases of the respiratory cycle were discriminated. They delivered peak and late inspiratory and expiratory gas flow (PIF, LIF, PEF, LEF) characterizing early or late inspiration or expiration. Results Linear regression analysis of EIT and spirometry in healthy pigs revealed a very good correlation measuring peak flow and a good correlation detecting late flow. PIFEIT = 0.702 · PIFspiro + 117.4, r2 = 0.809; PEFEIT = 0.690 · PEFspiro-124.2, r2 = 0.760; LIFEIT = 0.909 · LIFspiro + 27.32, r2 = 0.572 and LEFEIT = 0.858 · LEFspiro-10.94, r2 = 0.647. EIT derived absolute gas flow was generally smaller than data from spirometry. Regional gas flow was distributed heterogeneously during different phases of the respiratory cycle. But, the regional distribution of gas flow stayed stable during different ventilator settings. Moderate lung injury changed the regional pattern of gas flow. Conclusions We conclude that the presented method is able to determine global respiratory gas flow of the lung in different phases of the respiratory cycle. Additionally, it delivers meaningful insight into regional pulmonary characteristics, i.e. the regional ability of the lung to take up and to release air.
Resumo:
We present a technique to reconstruct the electromagnetic properties of a medium or a set of objects buried inside it from boundary measurements when applying electric currents through a set of electrodes. The electromagnetic parameters may be recovered by means of a gradient method without a priori information on the background. The shape, location and size of objects, when present, are determined by a topological derivative-based iterative procedure. The combination of both strategies allows improved reconstructions of the objects and their properties, assuming a known background.
Resumo:
Cerebral electrical impedance is useful for the detection of cerebral edema following hypoxia in newborn infants. Thus it may be useful for determining neurological outcome or monitoring treatment. Hypothermia is a promising new therapy currently undergoing trials, but will alter impedance measurements. This study aimed to define the relationship between temperature and both cerebral and whole body electrical impedance, and to derive correction factors for adjustment of impedance measurements during hypothermia. In eight anaesthetized 1-2 day old piglets rectal, tympanic and scalp temperatures were monitored continuously. Following baseline readings at a rectal temperature of 39degreesC, piglets were cooled to 32degreesC. Four piglets were re-warmed. Cerebral and whole body impedance were measured at each 0.5degreesC as rectal temperature decreased. There was a strong linear relationship between both cerebral and whole body impedance and each of the temperatures measured. There was no difference in the relationship between impedance and rectal, tympanic or scalp temperatures. The relationship for impedance and rectal temperature was the same during cooling and re-warming. Using the correction factors derived it will be possible to accurately monitor cerebral and whole body fluid distribution during hypothermic treatment.
Resumo:
Functional electrical impedance tomography (EIT) measures relative impedance change that occurs in the chest during a distinct observation period and an EIT image describing regional relative impedance change is generated. Analysis of such an EIT image may be erroneous because it is based on an impedance signal that has several components. Most of the change in relative impedance in the chest is caused by air movement but other physiological events such as cardiac activity change in end expiratory level or pressure swings originating from a ventilator circuit can influence the impedance signal. We obtained EIT images and signals in spontaneously breathing healthy adults, in extremely prematurely born infants on continuous positive airway pressure and in ventilated sheep on conventional mechanical or high frequency oscillatory ventilation (HFOV). Data were analyzed in the frequency domain and results presented after band pass filtering within the frequency range of the physiological event of interest. Band pass filtering of EIT data is necessary in premature infants and on HFOV to differentiate and eliminate relative impedance changes caused by physiological events other than the one of interest.
Resumo:
Electrical impedance tomography is applied to the problem of detecting, locating, and tracking fractures in ballistics gelatin. The hardware developed is intended to be physically robust and based on off-the-shelf hardware. Fractures were created in two separate ways: by shooting a .22 caliber bullet into the gelatin and by injecting saline solution into the gelatin. The .22 caliber bullet created an air gap, which was seen as an increase in resistivity. The saline solution created a fluid filled gap, which was seen as a decrease in resistivity. A double linear array was used to take data for each of the fracture mechanisms and a two dimensional cross section was inverted from the data. The results were validated by visually inspecting the samples during the fracture event. It was found that although there were reconstruction errors present, it was possible to reconstruct a representation of the resistive cross section. Simulations were performed to better understand the reconstructed cross-sections and to demonstrate the ability of a ring array, which was not experimentally tested.
Resumo:
The paper discusses the evaluation of the uncertainty of a multivariate quantity using the Law of Propagation of Uncertainty defined in the Guide to the Expression of Uncertainty in Measurement (GUM) and a Monte Carlo method according to the GUM’s Supplement 2. The quantity analysed is the electrical impedance, which is not a scalar but a complex quantity. The used measuring method allows the evaluation of the impedance and of its uncertainty in different ways and the corresponding results are presented, compared and discussed. For comparison purposes, results of the impedance uncertainty obtained using the NIST Uncertainty Machine are also presented.
Resumo:
This paper compares the performance of the complex nonlinear least squares algorithm implemented in the LEVM/LEVMW software with the performance of a genetic algorithm in the characterization of an electrical impedance of known topology. The effect of the number of measured frequency points and of measurement uncertainty on the estimation of circuit parameters is presented. The analysis is performed on the equivalent circuit impedance of a humidity sensor.
Resumo:
La tomografia ad impedenza elettrica è un metodo di imaging relativamente nuovo che ha suscitato interesse in un ampia gamma di discipline, la sua portabilità, sicurezza e basso costo suggeriscono che potrebbe risolvere diversi problemi clinici. Matematicamente il problema dell'EIT può essere suddiviso in un problema in avanti e uno inverso. Il problema forward, si basa su un'equazione differenziale parziale ellittica, e definisce l'insieme delle tensioni misurate a partire da una distribuzione nota di conducibilità. Il problema inverso è modellato come un problema dei minimi quadrati non lineare, in cui si cerca di ridurre al minimo la differenza tra le tensioni misurate e quelle generate dalla conducibilità ricostruita. Il problema inverso è mal posto e porta ad una soluzione che non dipende con continuità dai dati e quindi le tecniche di ricostruzione richiedono l'introduzione di un termine di regolarizzazione. L'elaborato si concentra sulle strategie algoritmiche per il problema inverso e sulla realizzazione di un'interfaccia grafica in grado di settare i parametri e confrontare velocemente i metodi proposti. Il progetto nella sua visione più ampia vorrebbe utilizzare le strategie algoritmiche proposte per dati ottenuti dal sistema prodotto dall'Università di Bologna nel laboratorio di Ingegneria Cellulare e Molecolare (ICM) di Cesena. I risultati dei test consentono di delineare quali siano gli strumenti migliori per poter arrivare ad una corretta ricostruzione dell'immagine nonché suggerire possibili miglioramenti della configurazione hardware al fine arrivare a risultati sperimentali completi.