961 resultados para Elastic-Modulus


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our previous paper, the expanding cavity model (ECM) and Lame solution were used to obtain an analytical expression for the scale ratio between hardness (H) to reduced modulus (E-r) and unloading work (W-u) to total work (W-t) of indentation for elastic-perfectly plastic materials. In this paper, the more general work-hardening (linear and power-law) materials are studied. Our previous conclusions that this ratio depends mainly on the conical angle of indenter, holds not only for elastic perfectly-plastic materials, but also for work-hardening materials. These results were also verified by numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanometer-scale elastic moduli and yield strengths of polycarbonate (PC) and polystyrene (PS) thin films were measured with atomic force microscopy (AFM) indentation measurements. By analysis of the AFM indentation force curves with the method by Oliver and Pharr, Young's moduli of PC and PS thin films could be obtained as 2.2 +/- 0.1 and 2.6 +/- 0.1 GPa, respectively, which agree well with the literature values. By fitting Johnson's conical spherical cavity model to the measured plastic zone sizes, we obtained yield strengths of 141.2 MPa for PC thin films and 178.7 MPa for PS thin films, which are similar to2 times the values expected from the literature. We propose that it is due to the AFM indentation being asymmetric, which was not accounted for in Johnson's model. A correction factor, epsilon, of similar to0.72 was introduced to rescale the plastic zone size, whereupon good agreement between theory and experiment was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To determine, by means of static fracture testing the effect of the tooth preparation design and the elastic modulus of the cement on the structural integrity of the cemented machined ceramic crown-tooth complex. 
Methods: Human maxillary extracted premolar teeth were prepared for all-ceramic crowns using two preparation designs; a standard preparation in accordance with established protocols and a novel design with a flat occlusal design. All-ceramic feldspathic (Vita MK II) crowns were milled for all the preparations using a CAD/CAM system (CEREC-3). The machined all-ceramic crowns were resin bonded to the tooth structure using one of three cements with different elastic moduli: Super-Bond C&B, Rely X Unicem and Panavia F 2.0. The specimens were subjected to compressive force through a 4 mm diameter steel ball at a crosshead speed of 1 mm/min using a universal test machine (Loyds Instrument Model LRX.). The load at the fracture point was recorded for each specimen in Newtons (N). These values were compared to a control group of unprepared/unrestored teeth. 
Results: There was a significant difference between the control group, with higher fracture strength, and the cemented samples regardless of the occlusal design and the type of resin cement. There was no significant difference in mean fracture load between the two designs of occlusal preparation using Super-Bond C&B. For the Rely X Unicem and Panavia F 2.0 cements, the proposed preparation design with a flat occlusal morphology provides a system with increased fracture strength. 
Significance: The proposed novel flat design showed less dependency on the resin cement selection in relation to the fracture strength of the restored tooth. The choice of the cement resin, with respect to its modulus of elasticity, is more important in the anatomic design than in the flat design. © 2013 Academy of Dental Materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic modulus and hardness of several microstructure components of dry bovine vertebrae and tibia have been investigated in the longitude and transverse directions using nanoindentation. The elastic modulus for the osteons and the interstitial lamellae in the longitude direction were found to be (24.7±2.5) GPa and (30.1±2.4) GPa. As it's difficult to distinguish osteons from interstitial lamellae in the transverse direction, the average elastic modulus for cortical bovine bone in the transverse direction was (19.8±1.6) GPa. The elastic modulus for trabecular bone in the longitude and transverse direction were (20±2) GPa and (14.7±1.9) GPa respectively. The hardness also varied among the microstructure components in the range of 0.41–0.89 GPa. Analyses of variance show that the values are significantly different.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)