960 resultados para Elastic constant


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed ultrasonic study of the elastic properties of lithium ammonium sulfate ~LiNH4SO4! or LAS has been carried out below room temperature. The elastic constants of LAS at room temperature are reported. The discrepancy present in earlier elastic constant data associated with the different choice of axes for this orthorhombic system are clarified. The results of the temperature variation study down to 220 K confirm the ferroelastic phase transition at 285 K and establish a thermal hysteresis of about 2.5 K between the cooling and heating cycles. Results of the investigation on the suspected weak phase transition at 256 K suggest that this transition occurs at 242 K on cooling and at 256 K on heating, thus having a thermal hysteresis of about 14 K. However, since the observed elastic anomaly for this transition is very small, the nature of this transition still remains unclear

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental data from ultrasonic and inelastic neutron scattering measurements are analyzed for different families of Cu-based shape-memory alloys. It is shown that the transition occurs at a value, independent of composition and alloy family, of the ratio between the elastic constants associated with the two shears necessary to accomplish the lattice distortion from the bcc to the close-packed structure. The zone boundary frequency of the TA2[110] branch evaluated at the transition point (TM), weakly depends, for each family, on composition. A linear relationship between this frequency and the inverse of the elastic constant C', both quantities evaluated at TM, has been found, in agreement with the prediction of a Landau model proposed for martensitic transformations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the orientational ordering on the surface of a sphere using Monte Carlo and Brownian dynamics simulations of rods interacting with an anisotropic potential. We restrict the orientations to the local tangent plane of the spherical surface and fix the position of each rod to be at a discrete point on the spherical surface. On the surface of a sphere, orientational ordering cannot be perfectly nematic due to the inevitable presence of defects. We find that the ground state of four +1/2 point defects is stable across a broad range of temperatures. We investigate the transition from disordered to ordered phase by decreasing the temperature and find a very smooth transition. We use fluctuations of the local directors to estimate the Frank elastic constant on the surface of a sphere and compare it to the planar case. We observe subdiffusive behavior in the mean square displacement of the defect cores and estimate their diffusion constants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we report a study of the physicochemical, dielectric and piezoelectric properties of anionic collagen and collagen-hydroxyapatite (HA) composites, considering the development of new biomaterials which have potential applications in support for cellular growth and in systems for bone regeneration. The piezoelectric strain tensor element d(14), the elastic constant s(55) and the dielectric permittivity 8(11), were measured for the anionic collagen and collagen-HA films. The thermal analysis shows that the denaturation endotherm is at 59.47 degreesC for the collagen sample. The collagen-HA composite film shows two transitions, at 48.9 and 80.65 degreesC. The X-ray diffraction pattern of the collagen film shows a broad band characteristic of an amorphous material. The main peaks associated to the crystalline HA is present in the sample of collagen-HA. In the collagen-HA composite, one can also notice the presence of other peaks with low intensities which is an indication of the formation of other crystalline phases of apatite. The scanning electron photomicrograph of anionic collagen membranes shows very thin bundles of collagen. The scanning electron photomicrography of collagen-HA film also show deposits of hydroxyapatite on the collagen fibers forming larger bundles and suggesting that a collagenous structure of reconstituted collagen fibers could act as nucleators for the formation of apatite crystal similar to those of bone. The piezoelectric strain tensor element d(14) was measured for the anionic collagen, with a value of 0.062 pC N-1, which is in good agreement compared with values reported in the literature obtained with other techniques. For the collagen-HA composite membranes, a slight decrease of the value of the piezoelectricity (0.041 pC N-1) was observed. The anionic collagen membranes present the highest density, dielectric permittivity and lowest frequency constant f.L. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the use of a large aperture PVDF receiver in the measurement of density of liquids and elastic constants of composite materials. The density measurement of several liquids is obtained with the accuracy of less than 0.2% using a conventional NDT emitter transducer and a 70-mm diameter, 52-μm P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants of composite materials is based in the measurement of phase velocity. It is shown that the diffraction can lead to errors around 1% in the velocity measurement when using a pair of ultrasonic transducers (1MHz and 19mm diameter) operating in transmission-reception mode separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz transducers. On the other hand, the dispersion at 10 MHz can result in errors of about 0.5%, measuring the velocity in composite materials. The use of an 80-mm diameter, 52-μm thick PVDF membrane receiver allows measuring the phase velocity without the diffraction effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully understood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholine (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle ¯bers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, incorporates the phenomenology of both MCh and FA and reproduces experimental results observed with in vitro exposure of smooth muscle to FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells in a tissue level model. The model can also be used in different biological scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully w1derstood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholinc (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle fibers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, ir1corporates the phenomenology of both MCh and FA and reproduces experirnental results observed with ir1 vitro exposure of smooth muscle to .FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells ir1 a tissue level model. The model can also be used in different biological scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is based on three main studies, all dealing with structure-property investigation of semicrystalline polyolefin-based composites. Low density poly(ethylene) (LDPE) and isotactic poly(propylene) (iPP) were chosen as parts of the composites materials and they were investigated either separately (as homoploymers), either in blend systems with the composition LDPE/iPP 80/20 or as filled matrix with layered silicate (montmorillonite). The beneficial influence of adding ethylene-co-propylene polymer of amorphous nature, to low density poly(ethylene)/isotactic poly(propylene) (80/20) blend is demonstrated. This effect is expressed by the major improvement of mechanical properties of ternary blends as examined at a macroscopic size scale by means of tensile measurements. The structure investigation also reveals a clear dependence of the morphology on adding ethylene-copropylene polymer. Both the nature and the content of ethylene-co-propylene polymer affect structure and properties. It is further demonstrated that the extent of improvement in mechanical properties is to be related to the molecular details of the compatibilizer. Combination of high molecular weight and high ethylene content is appropriate for the studied system where the poly(ethylene) plays the role of matrix. A new way to characterize semicrystalline systems by means of Brillouin spectroscopy is presented in this study. By this method based on inelastic light scattering, we were able to measure the high frequency elastic constant (c11) of the two microphases in the case where the spherulites size is exhibit size larger than the size of the probing phonon wavelength. In this considered case, the sample film is inhomogeneous over the relevant length scales and there is an access to the transverse phonon in the crystalline phase yielding the elastic constant c44 as well. Isotactic poly(propylene) is well suited for this type of investigation since its morphology can be tailored through different thermal treatment from the melt. Two distinctly different types of films were used; quenched (low crystallinity) and annealed (high crystallinity). The Brillouin scattering data are discussed with respect to the spherulites size, lamellae thickness, long period, crystallinity degree and well documented by AFM images. The structure and the properties of isotactic poly(propylene) matrix modified by inorganic layered silicate, montmorillonite, are discussed with respect to the clay content. Isotactic poly(propylene)-graft-maleic anhydride was used as compatibilizer. It is clearly demonstrated that the property enhancement is largely due to the ability of layered silicate to exfoliate. The intimate dispersion of the nanometer-thick silicate result from a delicate balance of the content ratio between the isotactic poly(propylene)-graft-maleic anhydride compatibilizer and the inorganic clay.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Equilibrium unilamellar vesicles are stabilized by one of two distinct mechanisms depending on the value of the bending constant. Helfrich undulations ensure that the interbilayer potential is always repulsive when the bending constant, K, is of order kBT. When K ≫ kBT, unilamellar vesicles are stabilized by the spontaneous curvature that picks out a particular vesicle radius; other radii are disfavored energetically. We present measurements of the bilayer elastic constant and the spontaneous curvature, Ro, for three different systems of equilibrium vesicles by an analysis of the vesicle size distribution determined by cryo-transmission electron microscopy and small-angle neutron scattering. For cetyltrimethylammonium bromide (CTAB)/sodium octyl sulfonate catanionic vesicles, K = .7 kBT, suggesting that the unilamellar vesicles are stabilized by Helfrich-undulation repulsions. However, for CTAB and sodium perfluorooctanoate (FC7) vesicles, K = 6 kBT, suggesting stabilization by the energetic costs of deviations from the spontaneous curvature. Adding electrolyte to the sodium perfluorooctanoate/CTAB vesicles leads to vesicles with two bilayers; the attractive interactions between the bilayers can overcome the cost of small deviations from the spontaneous curvature to form two-layer vesicles, but larger deviations to form three and more layer vesicles are prohibited. Vesicles with a discrete numbers of bilayers at equilibrium are possible only for bilayers with a large bending modulus coupled with a spontaneous curvature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 6% Ge isocomposition profile change of individual SiGe islands during Si capping at 640 degrees C is investigated by atomic force microscopy combined with a selective etching procedure. The island shape transforms from a dome to a {103}-faceted pyramid at a Si capping thickness of 0.32 nm, followed by the decreasing of pyramid facet inclination with increasing Si capping layer thickness. The 6% Ge isocomposition profiles show that the island with more highly Si enriched at its one base corner before Si capping becomes to be more highly Si intermixed along pyramid base diagonals during Si capping. This Si enrichment evolution inside an island during Si capping can be attributed to the exchange of capped Si atoms that aggregated to the island by surface diffusion with Ge atoms from inside the island by both atomic surface segregation and interdiffusion rather than to the atomic interdiffusion at the interface between the island and the Si substrate. In addition, the observed Si enrichment along the island base diagonals is attempted to be explained on the basis of the elastic constant anisotropy of the Si and Ge materials in (001) plane. (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential for nonlinear optical processes in nematic-liquid-crystal cells is great due to the large phase changes resulting from reorientation of the nematic-liquid-crystal director. Here the combination of diffraction and self-diffraction effects are studied simultaneously by the use of a pair of focused laser beams which are coincident on a homeotropically aligned liquid-crystal cell. The result is a complicated diffraction pattern in the far field. This is analyzed in terms of the continuum theory for liquid crystals, using a one-elastic-constant approximation to solve the reorientation profile. Very good comparison between theory and experiment is obtained. An interesting transient grating, existing due to the viscosity of the liquid-crystal material, is observed in theory and practice for large cell-tilt angles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential for nonlinear optical processes in nematic-liquid-crystal cells is great due to the large phase changes resulting from reorientation of the nematic-liquid-crystal director. Here the combination of diffraction and self-diffraction effects are studied simultaneously by the use of a pair of focused laser beams which are coincident on a homeotropically aligned liquid-crystal cell. The result is a complicated diffraction pattern in the far field. This is analyzed in terms of the continuum theory for liquid crystals, using a one-elastic-constant approximation to solve the reorientation profile. Very good comparison between theory and experiment is obtained. An interesting transient grating, existing due to the viscosity of the liquid-crystal material, is observed in theory and practice for large cell-tilt angles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced B2 -> body-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of similar to 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of similar to 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 angstrom, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under hot-forming conditions characterized by high homologous temperatures and strain-rates, metals usually exhibit rate-dependent inelastic behavior. An elastic-viscoplastic constitutive model is presented here to describe metal behavior during hot-forming. The model uses an isotropic internal variable to represent the resistance offered to plastic deformation by the microstructure. Evolution equations are developed for the inelastic strain and the deformation resistance based on experimental results. A methodology is presented for extracting model parameters from constant true strain-rate compression tests performed at different temperatures. Model parameters are determined for an Al-1Mn alloy and an Al-Mg-Si alloy, and the predictions of the model are shown to be in good agreement with the experimental data. (C) 2000 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature and magnetic field studies of the elastic constants of the chromium spinel CdCr2O4 show pronounced anomalies related to strong spin-phonon coupling in this frustrated antiferromagnet. A detailed comparison of the longitudinal acoustic mode propagating along the 111] direction with a theory based on an exchange-striction mechanism leads to an estimate of the strength of the magnetoelastic interaction. The derived spin-phonon coupling constant is in good agreement with previous determinations based on infrared absorption. Further insight is gained from intermediate and high magnetic field experiments in the field regime of the magnetization plateau. The role of the antisymmetric Dzyaloshinskii-Moriya interaction is discussed.