986 resultados para Ehrenfest classical quantum theorem
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.
Resumo:
We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.
Resumo:
Chapter I
Theories for organic donor-acceptor (DA) complexes in solution and in the solid state are reviewed, and compared with the available experimental data. As shown by McConnell et al. (Proc. Natl. Acad. Sci. U.S., 53, 46-50 (1965)), the DA crystals fall into two classes, the holoionic class with a fully or almost fully ionic ground state, and the nonionic class with little or no ionic character. If the total lattice binding energy 2ε1 (per DA pair) gained in ionizing a DA lattice exceeds the cost 2εo of ionizing each DA pair, ε1 + εo less than 0, then the lattice is holoionic. The charge-transfer (CT) band in crystals and in solution can be explained, following Mulliken, by a second-order mixing of states, or by any theory that makes the CT transition strongly allowed, and yet due to a small change in the ground state of the non-interacting components D and A (or D+ and A-). The magnetic properties of the DA crystals are discussed.
Chapter II
A computer program, EWALD, was written to calculate by the Ewald fast-convergence method the crystal Coulomb binding energy EC due to classical monopole-monopole interactions for crystals of any symmetry. The precision of EC values obtained is high: the uncertainties, estimated by the effect on EC of changing the Ewald convergence parameter η, ranged from ± 0.00002 eV to ± 0.01 eV in the worst case. The charge distribution for organic ions was idealized as fractional point charges localized at the crystallographic atomic positions: these charges were chosen from available theoretical and experimental estimates. The uncertainty in EC due to different charge distribution models is typically ± 0.1 eV (± 3%): thus, even the simple Hückel model can give decent results.
EC for Wurster's Blue Perchl orate is -4.1 eV/molecule: the crystal is stable under the binding provided by direct Coulomb interactions. EC for N-Methylphenazinium Tetracyanoquino- dimethanide is 0.1 eV: exchange Coulomb interactions, which cannot be estimated classically, must provide the necessary binding.
EWALD was also used to test the McConnell classification of DA crystals. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine: 7,7,8,8-Tetracyanoquinodimethan) EC = -4.0 eV while 2εo = 4.65 eV: clearly, exchange forces must provide the balance. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine:para-Chloranil) EC = -4.4 eV, while 2εo = 5.0 eV: again EC falls short of 2ε1. As a Gedankenexperiment, two nonionic crystals were assumed to be ionized: for (1:1)-(Hexamethyl- benzene:para-Chloranil) EC = -4.5 eV, 2εo = 6.6 eV; for (1:1)- (Napthalene:Tetracyanoethylene) EC = -4.3 eV, 2εo = 6.5 eV. Thus, exchange energies in these nonionic crystals must not exceed 1 eV.
Chapter III
A rapid-convergence quantum-mechanical formalism is derived to calculate the electronic energy of an arbitrary molecular (or molecular-ion) crystal: this provides estimates of crystal binding energies which include the exchange Coulomb inter- actions. Previously obtained LCAO-MO wavefunctions for the isolated molecule(s) ("unit cell spin-orbitals") provide the starting-point. Bloch's theorem is used to construct "crystal spin-orbitals". Overlap between the unit cell orbitals localized in different unit cells is neglected, or is eliminated by Löwdin orthogonalization. Then simple formulas for the total kinetic energy Q^(XT)_λ, nuclear attraction [λ/λ]XT, direct Coulomb [λλ/λ'λ']XT and exchange Coulomb [λλ'/λ'λ]XT integrals are obtained, and direct-space brute-force expansions in atomic wavefunctions are given. Fourier series are obtained for [λ/λ]XT, [λλ/λ'λ']XT, and [λλ/λ'λ]XT with the help of the convolution theorem; the Fourier coefficients require the evaluation of Silverstone's two-center Fourier transform integrals. If the short-range interactions are calculated by brute-force integrations in direct space, and the long-range effects are summed in Fourier space, then rapid convergence is possible for [λ/λ]XT, [λλ/λ'λ']XT and [λλ'/λ'λ]XT. This is achieved, as in the Ewald method, by modifying each atomic wavefunction by a "Gaussian convergence acceleration factor", and evaluating separately in direct and in Fourier space appropriate portions of [λ/λ]XT, etc., where some of the portions contain the Gaussian factor.
Resumo:
Gough, John, 'Quantum Stratonovich Stochastic Calculus and the Quantum Wong-Zakai Theorem', Journal of Mathematical Physics. 47, 113509, (2006)
Resumo:
Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested.
Resumo:
Key establishment is a crucial primitive for building secure channels in a multi-party setting. Without quantum mechanics, key establishment can only be done under the assumption that some computational problem is hard. Since digital communication can be easily eavesdropped and recorded, it is important to consider the secrecy of information anticipating future algorithmic and computational discoveries which could break the secrecy of past keys, violating the secrecy of the confidential channel. Quantum key distribution (QKD) can be used generate secret keys that are secure against any future algorithmic or computational improvements. QKD protocols still require authentication of classical communication, although existing security proofs of QKD typically assume idealized authentication. It is generally considered folklore that QKD when used with computationally secure authentication is still secure against an unbounded adversary, provided the adversary did not break the authentication during the run of the protocol. We describe a security model for quantum key distribution extending classical authenticated key exchange (AKE) security models. Using our model, we characterize the long-term security of the BB84 QKD protocol with computationally secure authentication against an eventually unbounded adversary. By basing our model on traditional AKE models, we can more readily compare the relative merits of various forms of QKD and existing classical AKE protocols. This comparison illustrates in which types of adversarial environments different quantum and classical key agreement protocols can be secure.
Resumo:
Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we do not assume anything about the spectral nature of the harmonic bath the derivation is not restricted only to the Ohmic bath, rather it is more general, for a non-Ohmic bath. We also derive expressions of the average work done and the variance of the work done in terms of the two-time correlation function of the fluctuations of the position of the harmonic oscillator. In the case of an Ohmic bath, we use these relations to evaluate the average work done and the variance of the work done analytically and verify the transient state work fluctuation theorem quantitatively. Actually these relations have far-reaching consequences. They can be used to numerically evaluate the average work done and the variance of the work done in the case of a non-Ohmic bath when analytical evaluation is not possible.
Resumo:
1H NMR spin-lattice relaxation time (T1) studies have been carried out in the temperature range 100 K to 4 K, at two Larmor frequencies 11.4 and 23.3 MHz, in the mixed system of betaine phosphate and glycine phosphite (BPxGPI(1-x)), to study the effects of disorder on the proton group dynamics. Analysis of T1 data indicates the presence of a number of inequivalent methyl groups and a gradual transition from classical reorientations to quantum tunneling rotations. At lower temperatures, microstructural disorder in the local environments of the methyl groups, result in a distribution in the activation energy (Ea) and the torsional energy gap (E01). For certain values of x, the magnetisation recovery shows biexponential behaviour at lower temperatures.
Quantum Metaphysics : The Role of Human Beings within the Paradigms of Classical and Quantum Physics
Resumo:
We demonstrate the phenomenon stated in the title, using for illustration a two-dimensional scalar-field model with a triple-well potential {fx837-1}. At the classical level, this system supports static topological solitons with finite energy. Upon quantisation, however, these solitons develop infinite energy, which cannot be renormalised away. Thus this quantised model has no soliton sector, even though classical solitons exist. Finally when the model is extended supersymmetrically by adding a Majorana field, finiteness of the soliton energy is recovered.
Resumo:
In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.
Resumo:
The no-hiding theorem says that if any physical process leads to bleaching of quantum information from the original system, then it must reside in the rest of the Universe with no information being hidden in the correlation between these two subsystems. Here, we report an experimental test of the no-hiding theorem with the technique of nuclear magnetic resonance. We use the quantum state randomization of a qubit as one example of the bleaching process and show that the missing information can be fully recovered up to local unitary transformations in the ancilla qubits.