987 resultados para Eggs parasitoid
Resumo:
Diatraea flavipennella (Box) (Lepidoptera, Crambidae) is one of the most destructive pests in sugarcane plantations in the Northeast Region of Brazil. Developmental characteristics and parasitism potential of the egg parasitoids Telenomus alecto Crawford (Hymenoptera, Scelionidae) and Trichogramma galloi Zucchi (Hymenoptera, Trichogrammatidae) were compared with the aim of selecting a suitable species for biological control of D. flavipennella. Both T. alecto and T. galloi developed well and were readily adapted to D. flavipennella eggs as host. Although, T. galloi presented higher viability, with more adults emerging per host egg and higher sex ratio, the developmental period (egg-adult) was shorter in T. alecto and female longevity was extended. In addition, T. alecto exhibited significant higher levels of parasitism during the first three days after emergence than T. galloi. Thus, both parasitoids studied here offer considerable potential for the control of D. flavipennella in sugarcane.
Resumo:
No impact of Bt soybean that express Cry1Ac protein on biological traits of Euschistus heros (Hemiptera, Pentatomidae) and its egg parasitoid Telenomus podisi (Hymenoptera, Platygastridae). Biological traits of the stink bug Euschistus heros and its main biological control agent Telenomus podisi were evaluated under controlled environmental conditions (25 ± 2ºC; 60 ± 10% RH; and 14/10 h photoperiod) by placing first instar nymphs into Petri dishes with pods originating from two soybean isolines (Bt-soybean MON 87701 × MON 89788, which expresses the Cry1Ac protein, and its near non-Bt isoline A5547) where they remained until the adult stage. Due to gregarious behavior exhibited by first instar nymphs, they were individualized only when at the second instar. Adults were separated by sex and weighed, and pronotum width of each individual was subsequently measured. They were placed into plastic boxes containing soybean grains of the same soybean isoline as food source. Egg viability and female fecundity were assessed in adult individuals. Adult females of T. podisi (up to 24h old) were placed with eggs of E. heros from mothers reared on both soybean isolines. Nymphal development time, insect weight, pronotum width, sex ratio, female fecundity, and egg viability (% emergence) of Euschistus heros did not differ between treatments. Eggto-adult development time, female longevity, sex ratio, and percentage of parasitized eggs were not impacted by the Bt-soybean (expressing Cry1Ac protein). Results indicate that the Bt-soybean, MON 87701 × MON 89788, has no direct significant impact on the two studied species.
Resumo:
The objective of this research was to evaluate the parasitism behavior of Telenomus podisi Ashmead, Trissolcus basalis (Wollaston) e Trissolcus urichi Crawford (Hymenoptera: Scelionidae) on eggs of Nezara viridula L., Euschistus heros F., Piezodorus guildinii Westwood and Acrosternum aseadum Rolston (Heteroptera: Pentatomidae), in no choice and multiple choice experiments. For all parasitoid species, the results demonstrated the existence of a main host species that maximizes the reproductive success. The competitive interactions among the parasitoid species were investigated in experiments of sequential and simultaneous release of different combinations of parasitoid pairs on the hosts N. viridula, E. heros and A. aseadum. Exploitative competition was observed for egg batches at the genus level (Telenomus vs. Trissolcus) and interference competition at the species level (T. basalis vs. T. urichi). Trissolcus urichi was the most aggressive species, interfering with the parasitism of T. basalis. Generally, T. basalis showed an opportunistic behavior trying to parasitise eggs after T. urichi had abandoned the egg batch. The selection of parasitoid species for use in augmentative biological control programs should take into account the diversity of pentatomids present in soybean in addition to the interactions among the different species of parasitoids.
Resumo:
The objective of this work was to study the foraging behavior of Telenomus podisi Ashmead (Hymenoptera: Scelionidae) in the presence of stimuli from its host, Euschistus heros (Heteroptera: Pentatomidae). The stimuli selected were: egg mass; virgin males and females; volatile extracts of sexually mature males and females; components of male sex pheromone; a component of the alarm pheromone, hexane and an empty cage as control. In a closed arena, the parasitoids were given the choice between single and combined stimuli presented to them simultaneously. To find the host egg, T. podisi primarily uses the sensory cues released from the male insects. The orientation toward odors of male chemical extract indicates that a source of kairomone was detected. Gas chromatographic analyses of this substance showed peak of methyl 2,6,10-trimethyltridecanoate, the main component of male sexual pheromone. The sensory response to methyl 2,6,10-trimethyltridecanoate confirms that this compound may act as a kairomone to find host eggs. Females and egg mass stimuli were weakly attractive to the parasitoid.
Resumo:
The objective of this work was to determine the potential of five species of Scelionidae wasps - Telenomus podisi, Trissolcus basalis, Trissolcus urichi, Trissolcus teretis and Trissolcus brochymenae - as natural enemies of the neotropical stink bug Dichelops melacanthus, and to determine if the presence of eggs of other stink bug species influences the parasitism and development of the parasitoids. Two kinds of experiments were done in laboratory: without choice of hosts (eggs of D. melacanthus) and with choice (eggs of D. melacanthus and of Euschistus heros). Biological parameters, including proportion of parasitism, immature survivorship, progeny sex ratio, immature stage development period, and host preference were recorded. All the evaluated parasitoids can parasitize and develop on D. melacanthus eggs. The first choice of eggs did not influence the proportion of D. melacanthus eggs parasitized by Tr. basalis, Tr. teretis or Tr. brochymenae. However, D. melacanthus eggs as the first choice of Te. podisi and Tr. urichi increased, respectively, 9 and 14 times the chance for parasitism on eggs of this species. Behavioral and ecological aspects of parasitoids should be considered prior to their use in biological control programs.
Resumo:
BACKGROUND: Haplodiploidy, where females develop from diploid, fertilized eggs and males from haploid, unfertilized eggs, is abundant in some insect lineages. Some species in these lineages reproduce by thelytoky that is caused by infection with endosymbionts: infected females lay haploid eggs that undergo diploidization and develop into females, while males are very rare or absent. It is generally assumed that in thelytokous wasps, endosymbionts merely diploidize the unfertilized eggs, which would then trigger female development. RESULTS: We found that females in the parasitoid wasp Asobara japonica infected with thelytoky-inducing Wolbachia produce 0.7-1.2 % male offspring. Seven to 39 % of these males are diploid, indicating that diploidization and female development can be uncoupled in A. japonica. Wolbachia titer in adults was correlated with their ploidy and sex: diploids carried much higher Wolbachia titers than haploids, and diploid females carried more Wolbachia than diploid males. Data from introgression lines indicated that the development of diploid individuals into males instead of females is not caused by malfunction-mutations in the host genome but that diploid males are most likely produced when the endosymbiont fails to activate the female sex determination pathway. Our data therefore support a two-step mechanism by which endosymbionts induce thelytoky in A. japonica: diploidization of the unfertilized egg is followed by feminization, whereby each step correlates with a threshold of endosymbiont titer during wasp development. CONCLUSIONS: Our new model of endosymbiont-induced thelytoky overthrows the view that certain sex determination mechanisms constrain the evolution of endosymbiont-induced thelytoky in hymenopteran insects. Endosymbionts can cause parthenogenesis through feminization, even in groups in which endosymbiont-diploidized eggs would develop into males following the hosts' sex determination mechanism. In addition, our model broadens our understanding of the mechanisms by which endosymbionts induce thelytoky to enhance their transmission to the next generation. Importantly, it also provides a novel window to study the yet-poorly known haplodiploid sex determination mechanisms in haplodiploid insects.
Resumo:
In a field experiment the effects of Sumicidin (super) 5EC (fenitrothion), Metasystox EC25 (oxydemeton-methyl) and Tamaron SL600 (methamidophos), applied at different dosages, were evaluated against peach-potato aphid, Myzus persicae (Sulzer) and its parasitoid Aphidius matricariae Haliday on Cardinal and Desiree (respectively partially resistant and susceptible potato cultivars to M. persicae). Sumicidin (super) 5EC was found about 30% more effective in reducing aphid populations than the other insecticides tested. The highest doses of each insecticide caused maximum aphid mortality; in general aphid mortality appeared dose dependent. Almost all the higher and lower doses of the tested insecticides were about 19% more effective on Cardinal than on Desiree. The most significant result was the synergistic interaction at the lower doses with plant resistance, so that the same level of control was recorded with second highest dose on Cardinal as with the highest dose on Desiree. Also the same control level was achieved at the lowest dosage rate on Cardinal compared with the next higher dose on the Desiree. Sumicidin (super) 5EC was found least toxic to the parasitoid, A. matricariae in terms of percent parasitism, emergence of parasitoids and number of mature eggs in the emerging female parasitoids; increase of about 22, 67 and 47% respectively were found in parasitoid performance with Tamaron SL600 which was found comparatively highly toxic. The highest doses of all insecticides were found clearly toxic to the parasitoid. In general, effects on the parasitoid were dose dependent. Maximum yield was obtained from the second highest dose of Sumicidin (super) 5EC.
Resumo:
Field studies were conducted in Pakistan to examine the effects and the interaction of two differentially resistant potato cultivars i.e. Cardinal and Desiree (one partially resistant and one susceptible to Myzus persicae (Sulzer), respectively) with different dosage rates of granular insecticides, at different time intervals after application in relation to percent kill of M. persicae and effects on the parasitoid Aphidius matricariae Haliday (i.e. the third trophic level) within the aphid mummies, percent parasitism and Thimet 10G (phorate) was found about 30% more effective in reducing aphid population than the Furadan 3G (carbofuran). The highest doses of each insecticide caused maximum aphid mortality, in general aphid mortality appeared dose dependent. Mostly all the higher and lower doses of the tested insecticides were about 10% more effective on Cardinal than on Desiree. The most significant result was the synergistic interaction at the lower doses with plant resistance, so that the same level of control was recorded with the second highest dose on Cardinal as with the highest dose on Desiree. Also the same level of control was observed at the lowest dose on Cardinal as with the second last lowest dose on Desiree. Furadan 3G was found least toxic to the A. matricariae in terms of percent parasitism, emergence of parasitoids and number of mature eggs in the emerging females. Furadan 3G gave 13, 15 and 6% higher figures, respectively from the parasitoid characteristics than Thimet 10G. The highest doses of both insecticides were clearly toxic to the parasitoid. In general, the effects on the parasitoid were dose dependent. The second highest dose of Thimet 10G, gave the maximum yield
Resumo:
Drosophila melanogaster larvae defend themselves against parasitoid attack via the process of encapsulation. However, flies that successfully defend them selves have reduced fitness as adults. Adults which carry an encapsulated parasitoid egg are smaller and females produce significantly fewer eggs than controls. Capsule-bearing males allowed repeated copulations with females do not show a reduction in their number of offspring, but those allowed to copulate only once did. No differences were found in time to first oviposition in females, or in time to first copulation in males. We interpret the results as arising from a trade-off between investing resources in factors promoting fecundity and mating success, and in defence against parasitism. The outcome of this investment decision influences the strength of selection for defence against parasitism.
Resumo:
The influence of temperatures on the life parameters of the solitary oothecal parasitoid Evania appendigaster, was investigated in the laboratory. Parasitized oothecae of Periplaneta americana were left to develop under seven constant temperatures: 15, 17, 20, 25, 30, 35, and 40 degrees C. At the end, we found that: (i) E. appendigaster was able to complete development within the temperature range of 17-34 degrees C; (ii) mean adult longevity decreased as temperature increased, with the temperature of 40 degrees C being fatal in a matter of hours; (iii) males lived longer than females between 15 and 30 degrees C; (iv) adult emergence rate was the highest at 25 degrees C, and (v) no wasps emerged at 15 or 40 degrees C. Non-emerged oothecae contained either unhatched eggs or dead larvae. We determined the theoretical lower developmental threshold and thermal constant for the complete development as 12.9 degrees C and 584.8 day-degrees for males, and 13.1 degrees C and 588.2 day-degrees for females, respectively. A good balance between faster development, maximum adult longevity and good egg viability was obtained between 25-30 degrees C, and that would be the best temperature range for rearing E. appendigaster. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fertility life tables were developed for both Trichogramma pretiosum and Trichogramma acacioi reared on Sitotroga cerealella eggs as an alternative host at five different temperatures. The egg parasitoids were first collected from Nipteria panacea eggs, a lepidopterous pest of avocado. Egg parasitoid females were individualized in small glass vials along with 40 eggs of the host during 24 h for parasitization. For evaluation of the parasitism capacity, a similar procedure was adopted, but cardboards with eggs were replaced every day. The net reproductive rate (Ro), intrinsic rate of increase (rm), finite rate of increase (lambda), and mean generation time (T) were estimated. Temperature affected all parameters for both Trichogramma species. The highest fecundity for both species was observed at 25degreesC. Extreme temperatures such as 15degreesC or 35degreesC negatively affect the development rate of both species.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The capacity of Telenomus remus to parasitize eggs of Anticarsia gemmatalis, compared with its natural host, Spodoptera frugiperda, was evaluated under different temperatures. The parasitoid T. remus was reared at 25 +/- 1 degrees C for a single generation on both hosts. After reaching the adult stage, they were allowed to parasitize both hosts to study parasitoid biology and parasitism capacity at temperatures between 19 degrees C and 37 +/- 1 degrees C. Egg-to-adult developmental time was similar on both hosts. The number of A. gemmatalis eggs parasitized was lower than that of S. frugiperda eggs at all temperatures. Parental female longevity of parasitoids was greater on A. gemmatalis eggs. This indicated a smaller metabolic expense during parasitism, a common feature observed on nonpreferable hosts. In general, sex ratio was little affected by temperature or hosts. When parental T. remus were reared on A. gemmatalis before the experiment, base temperature (Tb) and the thermal constant (K) were 9.53 degrees C and 209.57 DD on eggs of A. gemmatalis and 9.68 degrees C and 197.79 DD on eggs of S. frugiperda, respectively. When parental T. remus were reared on S. frugiperda eggs, Tb and K were 10.12 degrees C and 188.46 DD and 9.69 degrees C and 190.24 DD for the evaluated host eggs of A. gemmatalis and S. frugiperda, respectively. Therefore, T. remus develops in eggs of A. gemmatalis. This can be beneficial for its use in field crops where outbreaks of both Spodoptera spp. and A. gemmatalis occur. However, A. gemmatalis is a less favorable host for the parasitoid development.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)