20 resultados para Ectotherm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snakes are ectothermic animals and, therefore, their physiological functions are strongly affected by temperature. For instance, the resting metabolic rate (RMR) of this animals increase with the rise in body temperature. However, metabolic determinations in ectothermic organisms, including snakes, are generally made by submitting the animals to constant temperature regimes. This experimental procedure, although widely used, accepted and certainly suitable in several cases, submit the animals to a very different situation from that experienced by them in nature. In fact, ectothermics are known by presenting extensive variations in their body temperatures trough the day and/or seasons. If this disagreement between the thermal biology of the animals and the experimental conditions, for instance over the circadian cycle, affects the determinations of metabolic rates of ectotherm animals, remains quite uncertain. Thus, this study aimed to test the effects of different thermal regimes (fluctuating vs constant) in different temperature ranges over the TMR of rattlesnakes (Crotalus durissus). Therefore, the TMR of rattlesnakes was measured by the oxygen consumption rates ( V O2) in the constant temperatures of 15°C, 20°C, 25°C, 30°C and 35°C. For fluctuating regimes, snakes were measured in thermoperiods of 12/12 hours, as follows: 15°C and 25°C; 20°C and 30°C; 25°C and 35°C. Our results show that the RMR of C. durissus rises as the temperature increases, regardless of the thermal regime. The obtained RMR in the constant regimes of 20°C and 25°C was not different from that measured in the correspondent fluctuating regimes (i.e., 15 - 25°C e 20 - 30°C). However, at constant 30°C, the RMR was significantly higher than that obtained in the 30°C fluctuating regime (25 - 35ºC). This indicates that the potential effects in submitting of snakes to different thermal regimes of its thermal biology become more important with...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Males of the eastern mosquito fish (Gambusia holbrooki) possess one of the widest reproductively active temperature ranges for any ectotherm, ranging across seasons from at least 18degreesC to 34degreesC. In this study, we tested the ability of male G. holbrooki to acclimate their sustained swimming performance following long-term exposure to 18degreesC or 30degreesC. We also investigated some of the possible physiological mechanisms associated with thermal acclimation responses in swimming performance, including changes in slow muscle fibre size and abundance and the expression of myosin heavy chains (MyHC). We found that U-crit, of 18degreesC-acclimated G. holbrooki was 20% greater at 18degreesC than 30degreesC-acclimated fish, and the Ucrit of the 30degreesC-acclimated group was more than 15% greater at 30degreesC. Slow, fast and intermediate muscle fibres were identified on the basis of their myosin ATPase staining reaction. Although the number of slow and intermediate muscle fibres was similar between groups, the total cross-sectional area of aerobic fibre types was 40% greater in 18degrees-than 30degreesC-acclimated fish, reflecting an increase in the average fibre diameter. An S58 antibody raised against chicken slow skeletal muscle myosin stained a sub-set of the slow fibres identified by myosin ATPase staining. The number of S58-positive muscle fibres was 50% greater in 30degreesC-than 18degreesC-acclimated fish, implying that different MyHCs are being expressed in cold and warm acclimated individuals. Given the sexually coercive mating system of this species, increases in the sustained swimming performance via thermal acclimation may benefit the ability of males to maintain a high rate of sneaky copulations. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the functional consequences of temperature variation have been examined for a wide range of whole-animal performance traits, the implications of thermal variation for reproductive behaviour or performance are poorly known. I examined the acute effects of temperature on the mating behaviour and swimming performance of male eastern mosquitofish, Gambusia holbrooki, which rely on a coercive strategy to obtain matings and are routinely exposed to wide daily temperature fluctuations. Males showed reproductive behaviours across the entire test temperature range of 14-38 degrees C, representing one of the widest reproductively active temperature ranges for any ectotherm. Both the time spent in pursuit of females and the total number of mating attempts increased with temperature to a plateau that started at approximately 22-26 degrees C. However, males maintained a constant level of copulations at 18-34 degrees C, the temperature range they routinely experience in southeast Queensland. In contrast, maximum swimming performance and approach speeds during copulations were highly thermally dependent across this temperature range. Thus, acute temperature variation has important fitness implications for male G. holbrooki, but mating performance was significantly limited only at extreme temperatures. (c) 2005 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the adaptive significance of behavioural thermoregulation in univoltine populations of the grasshopper Melanoplus sanguinipes along an altitudinal gradient in California using laboratory tests of animals raised under different temperatures. Trials consisted of continuous body temperature measurements with semi-implanted microprobes in a test arena, and observation and simultaneous recording of behavioural responses. These responses included mobility, basking and orientation of the body axes (aspect angle) towards a radiation source. Mobility and basking are determined by the altitudinal origin of the parental generation and not by the temperature treatments. With increasing altitude, individuals tend increasingly to raise body temperatures via mobility and increased basking. In contrast, body orientation towards the radiation source is influenced by the temperature treatments but not by the altitude of origin. Individuals experiencing higher temperatures during rearing show a lower tendency to lateral flanking. We conclude that body orientation responses are not adapted locally. In contrast other components of the behavioural syndrome that increase body temperature, such as mobility and basking, are adaptive in response to local selection pressure. The thermoregulatory syndrome of these grasshoppers is an important contribution to life-history adaptations that appropriately match season lengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Broad nosed caiman are ectotherm sauropsids that naturally experience long fasting intervals. We have studied the postprandial responses by measuring oxygen consumption using respirometry, the size changes of the duodenum, the distal small intestine, and the liver, using repeated non-invasive ultrasonography, and by investigating structural changes on the level of tissues and cells by using light- and electron microscopy. The caimans showed the same rapid and reversible changes of organ size and identical histological features, down to the ultrastructure level, as previously described for other ectothermic sauropsids. We found a configuration change of the mucosa epithelium from pseudostratified during fasting to single layered during digestion, in association with hypertrophy of enterocytes by loading them with lipid droplets. Similar patterns were also found for the hepatocytes of the liver. By placing the results of our study in comparative relationship and by utilizing the phylogenetic bracket of crocodiles, birds and squamates, we suggest that the observed features are plesiomorphic characters of sauropsids. By extending the comparison to anurans, we suggest that morphological and physiological adjustments to feeding and fasting described here may have been a character of early tetrapods. In conclusion, we suggest that the ability to tolerate long fasting intervals and then swallow a single large meal as described for many sit-an-wait foraging sauropsids is a functional feature that was already present in ancestral tetrapods.