992 resultados para Ecological Genetics
Resumo:
Thyroid hormone is known to affect myocardial glycogen stores and thereby possibly limit anaerobic performance of mammalian cardiac muscle. Thyroid hormone administration (3,5,T-triiodo-L-thyroxine, 300 mu g/kg/day, sc) for 10 days decreased left ventricle (LV) glycogen concentration relative to euthyroid animals (2.78 +/- 0.46 vs. 4.28 +/- 0.29 mg/g of LV (mean +/- SEM)) while increasing the percent of V(1) myosin isozyi-ne, contractile activity and cardiac mass. In contrast, thyroidectomy increased myocardial glycogen stores (8.50 +/- 0.56 mg/g of LV) and shifted the myosin isozyme toward V(3), prolonged contractile activity and decreased LV mass. Thyroxine administration for 3, 7 and 10 days to thyroidectomized animals progressively decreased contractile duration and increased LV mass. Thyroxine administration for 3 or 7 days to thyroidectomized rats did not reduce glycogen stores (7.75 +/- 1.02 and 9.62 +/- 1.16 mg/g of LV, respectively), whereas myocardial glycogen declined to 3.30 +/- 0.58 mg/g of LV after 10 days of treatment. During hypoxia, cardiac muscle from thyroidectomized rats maintained greater active force and developed less contracture relative to euthyroid and, to a greater extent, than hyperthyroid rats. Removal of glucose from the bath decreased anaerobic performance and impaired recovery; however, myocardium from thyroidectomized rats remained more tolerant to hypoxia than the euthyroid group. Overall, the intrinsic LV glycogen content was positively correlated to anaerobic performance. These data demonstrate that the thyroid state profoundly affects myocardial growth, contractility and anaerobic performance of rat myocardium. Although energy demand may affect function during hypoxia, anaerobic substrate reserve (cardiac glycogen concentration) appears to be the primary factor determining tolerance to hypoxic stress. J. Exp. Zool. 311A:399-407, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The water spider Argyroneta aquatica (Clerck) is the only spider that spends its whole life under water. Water spiders keep an air bubble around their body for breathing and build under-water air bells, which they use for shelter and raising offspring, digesting and consuming prey, moulting, depositing eggs and sperm, and copulating. It is unclear whether these bells are an important oxygen reservoir for breathing under water, or whether they serve mainly to create water-free space for feeding and reproduction. In this study, we manipulated the composition of the gas inside the bell of female water spiders to test whether they monitor the quality of this gas, and replenish oxygen if required. We exchanged the entire gas in the bell either with pure O(2), pure CO(2), or with ambient air as control, and monitored behavioural responses. The test spiders surfaced and replenished air more often in the CO(2) treatment than in the O(2) treatment, and they increased bell building behaviour. In addition to active oxygen regulation, they monitored and adjusted the bells by adding silk. These results show that water spiders use the air bell as an oxygen reservoir, and that it functions as an external lung, which renders it essential for living under water permanently. A. aquatica is the only animal that collects, transports, and stores air, and monitors its property for breathing, which is an adaptive response of a terrestrial animal to the colonization of an aquatic habitat. J. Exp. Zool. 307A:549-555, 2007. (c) 2007 Wiley-Liss, Inc.
Resumo:
Both latitude and mating system have been proposed to shape relationships between steroid hormone levels and social behavior. Recently it has been postulated that species with long lasting non-seasonal territorial behavior have low androgen responsiveness. Tropical damselfishes are an ideal family to test this proposition because they show a large variety in mating systems. Here we contribute to the comparative dataset by measuring the response in steroid levels after social modulation in the banded sergeant, Abudefduf septemfasciatus, a species with non-seasonal territoriality. In highly territorial and brooding males, we found low androgen and cortisol levels that did not increase after experimental intraspecific simulated territorial intrusions (STI tests). No relationship was found between the variation in steroid hormone levels and territorial responses to naturally occurring territorial intrusions. Although steroid levels were low, male A. septemfasciatus were highly territorial both to STI challenges and to fishes that passed the territory. They often chased intruders for several meters away from the territory. This indicates that during nest defence in a non-seasonal territorial damselfish species, territorial behaviors are shown independent of variation in androgen and cortisol levels.
Resumo:
Alien plants provide a unique opportunity to study evolution in novel environments, but relatively little is known about the extent to which they become locally adapted to different environments across their new range. Here, we compare northern and southern populations of the introduced species Senecio squalidus in Britain; S. squalidus has been in southern Britain for approximately 200 years and reached Scotland only about 50 years ago. We conducted common garden experiments at sites in the north and south of the species’ range in Britain. We also conducted glasshouse and growth chamber experiments to test the hypothesis that southern genotypes flower later, are more drought-tolerant, germinate and establish better at warmer temperatures, and are less sensitive to cold stress than their more northern counterparts. Results from the common garden experiments are largely consistent with the hypothesis of rapid adaptive divergence of populations of the species within the introduced range, with genotypes typically showing a home-site advantage. Results from the glasshouse and growth chamber experiments demonstrate adaptive divergence in ability to tolerate drought stress and high temperatures, as well as in phenology. In particular, southern genotypes were more tolerant of dry conditions and high temperatures and they flowered later than northern genotypes. Our results show that rapid local adaptation can occur in alien species, and they have implications for our understanding of the ecological genetics of range expansion of introduced weeds.
Resumo:
The genomic era revolutionized evolutionary biology. The enigma of genotypic-phenotypic diversity and biodiversity evolution of genes, genomes, phenomes, and biomes, reviewed here, was central in the research program of the Institute of Evolution, University of Haifa, since 1975. We explored the following questions. (i) How much of the genomic and phenomic diversity in nature is adaptive and processed by natural selection? (ii) What is the origin and evolution of adaptation and speciation processes under spatiotemporal variables and stressful macrogeographic and microgeographic environments? We advanced ecological genetics into ecological genomics and analyzed globally ecological, demographic, and life history variables in 1,200 diverse species across life, thousands of populations, and tens of thousands of individuals tested mostly for allozyme and partly for DNA diversity. Likewise, we tested thermal, chemical, climatic, and biotic stresses in several model organisms. Recently, we introduced genetic maps and quantitative trait loci to elucidate the genetic basis of adaptation and speciation. The genome–phenome holistic model was deciphered by the global regressive, progressive, and convergent evolution of subterranean mammals. Our results indicate abundant genotypic and phenotypic diversity in nature. The organization and evolution of molecular and organismal diversity in nature at global, regional, and local scales are nonrandom and structured; display regularities across life; and are positively correlated with, and partly predictable by, abiotic and biotic environmental heterogeneity and stress. Biodiversity evolution, even in small isolated populations, is primarily driven by natural selection, including diversifying, balancing, cyclical, and purifying selective regimes, interacting with, but ultimately overriding, the effects of mutation, migration, and stochasticity.
Resumo:
The chalcid, Oomyzus sokolowskii Kurdjumov has been recorded in many parts of the world as a major larval-pupal, gregarious endoparasitoid of the diamondback moth, Plutella xylostella (Linnaeus), a serious pest of brassica vegetable crops worldwide. This study investigated intraspecific variation between two populations of O. sokiolowskii, one from Cape Verde Islands, West Africa and the other from Hangzhou, China. In all crosses and backcrosses between the two geographical populations, the numbers of progeny and sex ratio of progeny were similar to those obtained within each of the populations, demonstrating complete reproductive compatibility between the two populations. The two populations showed similar responses to temperature with respect to development time and survival of immature stages. Observations on the interactions between the two O. sokolowskii populations and Cotesia plutellae (Kurdjumov), another major parasitoid of P. xylostella, showed that neither population could achieve successful parasitism of P. xylostella larvae already parasitized by C. plutellac. However, both O. sokolowskii populations could achieve hyperparasitism by ovipositing into a mid-late stage larva of C. plutellae developing inside the primary host. Contrary to earlier reports, no evidence of intraspecific variations in ability to hyperparasitize between these two populations of O. sokolowskii was found.
Resumo:
The houbara bustard, Chlamydotis undulata, is a declining cryptic desert bird whose range extends from North Africa to Central Asia. Three subspecies are currently recognized by geographical distribution and morphology: C.u.fuertaventurae, C.u.undulata and C.u.macqueenii. We have sequenced 854 bp of mitochondrial control region from 73 birds to describe their population genetic structure with a particular sampling focus on the connectivity between C.u.fuertaventurae and C.u.undulata along the Atlantic seaboard of North Africa. Nucleotide and haplotypic diversity varied among the subspecies being highest in C.u.undulata, lowest in C.u.fuertaventurae and intermediate in C.u.macqueenii. C.u.fuertaventurae and C.u.undulata are paraphyletic and an average nucleotide divergence of 2.08% splits the later from C.u.macqueenii. We estimate that C.u.fuertaventurae and C.u.undulata split from C.u.macqueenii approximately 430 000 years ago. C.u.fuertaventurae and C.u.undulata are weakly differentiated (F-ST = 0.27, N-m = 1.3), indicative of a recent shared history. Archaeological evidence indicates that houbara bustards have been present on the Canary Islands for 130-170 000 years. However, our genetic data point to a more recent separation of C.u.fuertaventurae and C.u.undulata at around 20-25 000 years. Concordant archaeological, climatic opportunities for colonization and genetic data point to a scenario of: (i) initial colonization of the Canary Islands about 130 000 years ago; (ii) a period of secondary contact 19-30 000 years ago homogenizing any pre-existing genetic structure followed by; (iii) a period of relative isolation that persists today.
Resumo:
Conservation of genetic resources is a recognised necessity for the long term maintenance of evolutionary potential. Effective assessment and implementation Strategies are required to permit rapid evaluation and protection of resources. Here we use information from the chloroplast, total genome and quantitative characters assayed across wide-ranging populations to assess genetic resources in a Neotropical tree, Cedrela odorata. A major differentiation identified for organelle, total genomic and quantitative variation was found to coincide with an environmental gradient across Costa Rica. However, a major evolutionary divergence between the Yucatan region and Honduras/Nicaragua identified within the chloroplast genome was not differentiated using quantitative characters. Based on these and other results, a three-tiered conservation genetic prioritisation process is recommended. In order of importance, and where information is available, conservation units should be defined using quantitative (expressed genes), nuclear (genetic connectivity) and organellar (evolutionary) measures. Where possible, information from range wide and local scale studies should be combined and emphasis should be placed on coincidental disjunctions for two or more measures. However, if only rapid assessments of diversity are possible, then assessment of organelle variation provides the most cautious assessment of genetic resources, at least for C. odorata, and can be used to propose initial conservation units. When considering effective implementation of genetic resource management strategies a final tier should be considered, that of landuse/geopolitical divisions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Sustainable forest restoration and management practices require a thorough understanding of the influence that habitat fragmentation has on the processes shaping genetic variation and its distribution in tree populations. We quantified genetic variation at isozyme markers and chloroplast DNA (cpDNA), analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in severely fragmented populations of Sorbus aucuparia (Rosaceae) in a single catchment (Moffat) in southern Scotland. Remnants maintain surprisingly high levels of gene diversity (H-E) for isozymes (H-E = 0.195) and cpDNA markers (H-E = 0.490). Estimates are very similar to those from non-fragmented populations in continental Europe, even though the latter were sampled over a much larger spatial scale. Overall, no genetic bottleneck or departures from random mating were detected in the Moffat fragments. However, genetic differentiation among remnants was detected for both types of marker (isozymes Theta(n) = 0.043, cpDNA Theta(c) = 0.131; G-test, P-value < 0.001). In this self-incompatible, insect-pollinated, bird-dispersed tree species, the estimated ratio of pollen flow to seed flow between fragments is close to 1 (r = 1.36). Reduced pollen-mediated gene flow is a likely consequence of habitat fragmentation, but effective seed dispersal by birds is probably helping to maintain high levels of genetic diversity within remnants and reduce genetic differentiation between them.
Resumo:
Genetic assignment methods use genotype likelihoods to draw inference about where individuals were or were not born, potentially allowing direct, real-time estimates of dispersal. We used simulated data sets to test the power and accuracy of Monte Carlo resampling methods in generating statistical thresholds for identifying F-0 immigrants in populations with ongoing gene flow, and hence for providing direct, real-time estimates of migration rates. The identification of accurate critical values required that resampling methods preserved the linkage disequilibrium deriving from recent generations of immigrants and reflected the sampling variance present in the data set being analysed. A novel Monte Carlo resampling method taking into account these aspects was proposed and its efficiency was evaluated. Power and error were relatively insensitive to the frequency assumed for missing alleles. Power to identify F-0 immigrants was improved by using large sample size (up to about 50 individuals) and by sampling all populations from which migrants may have originated. A combination of plotting genotype likelihoods and calculating mean genotype likelihood ratios (D-LR) appeared to be an effective way to predict whether F-0 immigrants could be identified for a particular pair of populations using a given set of markers.
Resumo:
There is concern that the commercial harvest of kangaroos (Macropus spp.) is affecting species fitness and evolutionary potential because the harvest selects for larger individuals, particularly males. This paper reviews the likely effect of selective harvesting on specific traits associated with fitness, including size, and on adaptive genotypes through generalised loss of gene diversity. Heritability for traits associated with fitness is low generally. The intensity of selection imposed by harvesting is low for several reasons: the geographic size of genetic populations is much larger than the harvest localities, which are therefore not closed but open with immigration acting to correct any change in allele frequencies through harvesting; the harvest targets kangaroos above a threshold weight that includes all adult males, not the largest males specifically; larger, older males may not confer significant fitness benefits on offspring; fitness traits are inherited through both sexes while males are targeted predominantly; populations are not at a selective equilibrium because food availability fluctuates, and the fittest is unlikely to be the largest. Comparisons of harvested and unharvested populations do not show any loss of gene diversity as a result of harvesting. The likelihood of a long-term genetic impact of kangaroo harvesting as currently practiced is negligible.
Resumo:
Five microsatellite loci are presented for prickly acacia, Acacia nilotica ssp. indica (Benth.) Brenan, an introduced weed of national significance in Australia. These microsatellite loci were obtained through the construction of an enriched library and their use will enable us to determine the genetic origin and extent of genetic diversity of this weed in Australia.