981 resultados para Eclipse modeling framework (EMF)
Resumo:
Integrated project delivery (IPD) method has recently emerged as an alternative to traditional delivery methods. It has the potential to overcome inefficiencies of traditional delivery methods by enhancing collaboration among project participants. Information and communication technology (ICT) facilitates IPD by effective management, processing and communication of information within and among organizations. While the benefits of IPD, and the role of ICT in realizing them, have been generally acknowledged, the US public construction sector is very slow in adopting IPD. The reasons are - lack of experience and inadequate understanding of IPD in public owner as confirmed by the results of the questionnaire survey conducted under this research study. The public construction sector should be aware of the value of IPD and should know the essentials for effective implementation of IPD principles - especially, they should be cognizant of the opportunities offered by advancements in ICT to realize this. In order to address the need an IPD Readiness Assessment Model (IPD-RAM) was developed in this research study. The model was designed with a goal to determine IPD readiness of a public owner organization considering selected IPD principles, and ICT levels, at which project functions were carried out. Subsequent analysis led to identification of possible improvements in ICTs that have the potential to increase IPD readiness scores. Termed as the gap identification, this process was used to formulate improvement strategies. The model had been applied to six Florida International University (FIU) construction projects (case studies). The results showed that the IPD readiness of the organization was considerably low and several project functions can be improved by using higher and/or advanced level ICT tools and methods. Feedbacks from a focus group comprised of FIU officials and an independent group of experts had been received at various stages of this research and had been utilized during development and implementation of the model. Focus group input was also helpful for validation of the model and its results. It was hoped that the model developed would be useful to construction owner organizations in order to assess their IPD readiness and to identify appropriate ICT improvement strategies.
Resumo:
The use of domain-specific languages (DSLs) has been proposed as an approach to cost-e ectively develop families of software systems in a restricted application domain. Domain-specific languages in combination with the accumulated knowledge and experience of previous implementations, can in turn be used to generate new applications with unique sets of requirements. For this reason, DSLs are considered to be an important approach for software reuse. However, the toolset supporting a particular domain-specific language is also domain-specific and is per definition not reusable. Therefore, creating and maintaining a DSL requires additional resources that could be even larger than the savings associated with using them. As a solution, di erent tool frameworks have been proposed to simplify and reduce the cost of developments of DSLs. Developers of tool support for DSLs need to instantiate, customize or configure the framework for a particular DSL. There are di erent approaches for this. An approach is to use an application programming interface (API) and to extend the basic framework using an imperative programming language. An example of a tools which is based on this approach is Eclipse GEF. Another approach is to configure the framework using declarative languages that are independent of the underlying framework implementation. We believe this second approach can bring important benefits as this brings focus to specifying what should the tool be like instead of writing a program specifying how the tool achieves this functionality. In this thesis we explore this second approach. We use graph transformation as the basic approach to customize a domain-specific modeling (DSM) tool framework. The contributions of this thesis includes a comparison of di erent approaches for defining, representing and interchanging software modeling languages and models and a tool architecture for an open domain-specific modeling framework that e ciently integrates several model transformation components and visual editors. We also present several specific algorithms and tool components for DSM framework. These include an approach for graph query based on region operators and the star operator and an approach for reconciling models and diagrams after executing model transformation programs. We exemplify our approach with two case studies MICAS and EFCO. In these studies we show how our experimental modeling tool framework has been used to define tool environments for domain-specific languages.
Resumo:
Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------
Resumo:
We present a generic spatially explicit modeling framework to estimate carbon emissions from deforestation (INPE-EM). The framework incorporates the temporal dynamics related to the deforestation process and accounts for the biophysical and socioeconomic heterogeneity of the region under study. We build an emission model for the Brazilian Amazon combining annual maps of new clearings, four maps of biomass, and a set of alternative parameters based on the recent literature. The most important results are as follows: (a) Using different biomass maps leads to large differences in estimates of emission; for the entire region of the Brazilian Amazon in the last decade, emission estimates of primary forest deforestation range from 0.21 to 0.26 similar to Pg similar to C similar to yr-1. (b) Secondary vegetation growth presents a small impact on emission balance because of the short duration of secondary vegetation. In average, the balance is only 5% smaller than the primary forest deforestation emissions. (c) Deforestation rates decreased significantly in the Brazilian Amazon in recent years, from 27 similar to Mkm2 in 2004 to 7 similar to Mkm2 in 2010. INPE-EM process-based estimates reflect this decrease even though the agricultural frontier is moving to areas of higher biomass. The decrease is slower than a non-process instantaneous model would estimate as it considers residual emissions (slash, wood products, and secondary vegetation). The average balance, considering all biomass, decreases from 0.28 in 2004 to 0.15 similar to Pg similar to C similar to yr-1 in 2009; the non-process model estimates a decrease from 0.33 to 0.10 similar to Pg similar to C similar to yr-1. We conclude that the INPE-EM is a powerful tool for representing deforestation-driven carbon emissions. Biomass estimates are still the largest source of uncertainty in the effective use of this type of model for informing mechanisms such as REDD+. The results also indicate that efforts to reduce emissions should focus not only on controlling primary forest deforestation but also on creating incentives for the restoration of secondary forests.
Resumo:
Mixed Reality (MR) aims to link virtual entities with the real world and has many applications such as military and medical domains [JBL+00, NFB07]. In many MR systems and more precisely in augmented scenes, one needs the application to render the virtual part accurately at the right time. To achieve this, such systems acquire data related to the real world from a set of sensors before rendering virtual entities. A suitable system architecture should minimize the delays to keep the overall system delay (also called end-to-end latency) within the requirements for real-time performance. In this context, we propose a compositional modeling framework for MR software architectures in order to specify, simulate and validate formally the time constraints of such systems. Our approach is first based on a functional decomposition of such systems into generic components. The obtained elements as well as their typical interactions give rise to generic representations in terms of timed automata. A whole system is then obtained as a composition of such defined components. To write specifications, a textual language named MIRELA (MIxed REality LAnguage) is proposed along with the corresponding compilation tools. The generated output contains timed automata in UPPAAL format for simulation and verification of time constraints. These automata may also be used to generate source code skeletons for an implementation on a MR platform. The approach is illustrated first on a small example. A realistic case study is also developed. It is modeled by several timed automata synchronizing through channels and including a large number of time constraints. Both systems have been simulated in UPPAAL and checked against the required behavioral properties.
Resumo:
Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.
Resumo:
Ex vivo hematopoiesis is increasingly used for clinical applications. Models of ex vivo hematopoiesis are required to better understand the complex dynamics and to optimize hematopoietic culture processes. A general mathematical modeling framework is developed which uses traditional chemical engineering metaphors to describe the complex hematopoietic dynamics. Tanks and tubular reactors are used to describe the (pseudo-) stochastic and deterministic elements of hematopoiesis, respectively. Cells at any point in the differentiation process can belong to either an immobilized, inert phase (quiescent cells) or a mobile, active phase (cycling cells). The model describes five processes: (1) flow (differentiation), (2) autocatalytic formation (growth),(3) degradation (death), (4) phase transition from immobilized to mobile phase (quiescent to cycling transition), and (5) phase transition from mobile to immobilized phase (cycling to quiescent transition). The modeling framework is illustrated with an example concerning the effect of TGF-beta 1 on erythropoiesis. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Watershed-scale runoff routing and solute transport in a spatially aggregated hydrological framework
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Digital Businesses have become a major driver for economic growth and have seen an explosion of new startups. At the same time, it also includes mature enterprises that have become global giants in a relatively short period of time. Digital Businesses have unique characteristics that make the running and management of a Digital Business much different from traditional offline businesses. Digital businesses respond to online users who are highly interconnected and networked. This enables a rapid flow of word of mouth, at a pace far greater than ever envisioned when dealing with traditional products and services. The relatively low cost of incremental user addition has led to a variety of innovation in pricing of digital products, including various forms of free and freemium pricing models. This thesis explores the unique characteristics and complexities of Digital Businesses and its implications on the design of Digital Business Models and Revenue Models. The thesis proposes an Agent Based Modeling Framework that can be used to develop Simulation Models that simulate the complex dynamics of Digital Businesses and the user interactions between users of a digital product. Such Simulation models can be used for a variety of purposes such as simple forecasting, analysing the impact of market disturbances, analysing the impact of changes in pricing models and optimising the pricing for maximum revenue generation or a balance between growth in usage and revenue generation. These models can be developed for a mature enterprise with a large historical record of user growth rate as well as for early stage enterprises without much historical data. Through three case studies, the thesis demonstrates the applicability of the Framework and its potential applications.
Resumo:
Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.
Resumo:
RESUME Les évidences montrant que les changements globaux affectent la biodiversité s'accumulent. Les facteurs les plus influant dans ce processus sont les changements et destructions d'habitat, l'expansion des espèces envahissantes et l'impact des changements climatiques. Une évaluation pertinente de la réponse des espèces face à ces changements est essentielle pour proposer des mesures permettant de réduire le déclin actuel de la biodiversité. La modélisation de la répartition d'espèces basée sur la niche (NBM) est l'un des rares outils permettant cette évaluation. Néanmoins, leur application dans le contexte des changements globaux repose sur des hypothèses restrictives et demande une interprétation critique. Ce travail présente une série d'études de cas investiguant les possibilités et limitations de cette approche pour prédire l'impact des changements globaux. Deux études traitant des menaces sur les espèces rares et en danger d'extinction sont présentées. Les caractéristiques éco-géographiques de 118 plantes avec un haut degré de priorité de conservation sont revues. La prévalence des types de rareté sont analysées en relation avec leur risque d'extinction UICN. La revue souligne l'importance de la conservation à l'échelle régionale. Une évaluation de la rareté à échelle globale peut être trompeuse pour certaine espèces car elle ne tient pas en compte des différents degrés de rareté que présente une espèce à différentes échelles spatiales. La deuxième étude test une approche pour améliorer l'échantillonnage d'espèces rares en incluant des phases itératives de modélisation et d'échantillonnage sur le terrain. L'application de l'approche en biologie de la conservation (illustrée ici par le cas du chardon bleu, Eryngium alpinum), permettrait de réduire le temps et les coûts d'échantillonnage. Deux études sur l'impact des changements climatiques sur la faune et la flore africaine sont présentées. La première étude évalue la sensibilité de 227 mammifères africains face aux climatiques d'ici 2050. Elle montre qu'un nombre important d'espèces pourrait être bientôt en danger d'extinction et que les parcs nationaux africains (principalement ceux situé en milieux xériques) pourraient ne pas remplir leur mandat de protection de la biodiversité dans le futur. La seconde étude modélise l'aire de répartition en 2050 de 975 espèces de plantes endémiques du sud de l'Afrique. L'étude propose l'inclusion de méthodes améliorant la prédiction des risques liés aux changements climatiques. Elle propose également une méthode pour estimer a priori la sensibilité d'une espèce aux changements climatiques à partir de ses propriétés écologiques et des caractéristiques de son aire de répartition. Trois études illustrent l'utilisation des modèles dans l'étude des invasions biologiques. Une première étude relate l'expansion de la laitue sáuvage (Lactuca serriola) vers le nord de l'Europe en lien avec les changements du climat depuis 250 ans. La deuxième étude analyse le potentiel d'invasion de la centaurée tachetée (Centaures maculosa), une mauvaise herbe importée en Amérique du nord vers 1890. L'étude apporte la preuve qu'une espèce envahissante peut occuper une niche climatique différente après introduction sur un autre continent. Les modèles basés sur l'aire native prédisent de manière incorrecte l'entier de l'aire envahie mais permettent de prévoir les aires d'introductions potentielles. Une méthode alternative, incluant la calibration du modèle à partir des deux aires où l'espèce est présente, est proposée pour améliorer les prédictions de l'invasion en Amérique du nord. Je présente finalement une revue de la littérature sur la dynamique de la niche écologique dans le temps et l'espace. Elle synthétise les récents développements théoriques concernant le conservatisme de la niche et propose des solutions pour améliorer la pertinence des prédictions d'impact des changements climatiques et des invasions biologiques. SUMMARY Evidences are accumulating that biodiversity is facing the effects of global change. The most influential drivers of change in ecosystems are land-use change, alien species invasions and climate change impacts. Accurate projections of species' responses to these changes are needed to propose mitigation measures to slow down the on-going erosion of biodiversity. Niche-based models (NBM) currently represent one of the only tools for such projections. However, their application in the context of global changes relies on restrictive assumptions, calling for cautious interpretations. In this thesis I aim to assess the effectiveness and shortcomings of niche-based models for the study of global change impacts on biodiversity through the investigation of specific, unsolved limitations and suggestion of new approaches. Two studies investigating threats to rare and endangered plants are presented. I review the ecogeographic characteristic of 118 endangered plants with high conservation priority in Switzerland. The prevalence of rarity types among plant species is analyzed in relation to IUCN extinction risks. The review underlines the importance of regional vs. global conservation and shows that a global assessment of rarity might be misleading for some species because it can fail to account for different degrees of rarity at a variety of spatial scales. The second study tests a modeling framework including iterative steps of modeling and field surveys to improve the sampling of rare species. The approach is illustrated with a rare alpine plant, Eryngium alpinum and shows promise for complementing conservation practices and reducing sampling costs. Two studies illustrate the impacts of climate change on African taxa. The first one assesses the sensitivity of 277 mammals at African scale to climate change by 2050 in terms of species richness and turnover. It shows that a substantial number of species could be critically endangered in the future. National parks situated in xeric ecosystems are not expected to meet their mandate of protecting current species diversity in the future. The second study model the distribution in 2050 of 975 endemic plant species in southern Africa. The study proposes the inclusion of new methodological insights improving the accuracy and ecological realism of predictions of global changes studies. It also investigates the possibility to estimate a priori the sensitivity of a species to climate change from the geographical distribution and ecological proprieties of the species. Three studies illustrate the application of NBM in the study of biological invasions. The first one investigates the Northwards expansion of Lactuca serriola L. in Europe during the last 250 years in relation with climate changes. In the last two decades, the species could not track climate change due to non climatic influences. A second study analyses the potential invasion extent of spotted knapweed, a European weed first introduced into North America in the 1890s. The study provides one of the first empirical evidence that an invasive species can occupy climatically distinct niche spaces following its introduction into a new area. Models fail to predict the current full extent of the invasion, but correctly predict areas of introduction. An alternative approach, involving the calibration of models with pooled data from both ranges, is proposed to improve predictions of the extent of invasion on models based solely on the native range. I finally present a review on the dynamic nature of ecological niches in space and time. It synthesizes the recent theoretical developments to the niche conservatism issues and proposes solutions to improve confidence in NBM predictions of the impacts of climate change and species invasions on species distributions.
Resumo:
Self-potential (SP) data are of interest to vadose zone hydrology because of their direct sensitivity to water flow and ionic transport. There is unfortunately little consensus in the literature about how to best model SP data under partially saturated conditions, and different approaches (often supported by one laboratory data set alone) have been proposed. We argue that this lack of agreement can largely be traced to electrode effects that have not been properly taken into account. A series of drainage and imbibition experiments were considered in which we found that previously proposed approaches to remove electrode effects were unlikely to provide adequate corrections. Instead, we explicitly modeled the electrode effects together with classical SP contributions using a flow and transport model. The simulated data agreed overall with the observed SP signals and allowed decomposing the different signal contributions to analyze them separately. After reviewing other published experimental data, we suggest that most of them include electrode effects that have not been properly taken into account. Our results suggest that previously presented SP theory works well when considering the modeling uncertainties presently associated with electrode effects. Additional work is warranted to not only develop suitable electrodes for laboratory experiments but also to assure that associated electrode effects that appear inevitable in longer term experiments are predictable, so that they can be incorporated into the modeling framework.
Resumo:
Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.
Resumo:
To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Resumo:
We present a new subcortical structure shape modeling framework using heat kernel smoothing constructed with the Laplace-Beltrami eigenfunctions. The cotan discretization is used to numerically obtain the eigenfunctions of the Laplace-Beltrami operator along the surface of subcortical structures of the brain. The eigenfunctions are then used to construct the heat kernel and used in smoothing out measurements noise along the surface. The proposed framework is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shape. We detected a significant age effect on hippocampus in accordance with the previous studies. In addition, we also detected a significant gender effect on amygdala. Since we did not find any such differences in the traditional volumetric methods, our results demonstrate the benefit of the current framework over traditional volumetric methods.