986 resultados para East Pacific Rise 13N
Resumo:
Bioaccumulation of trace metals in carbonate shells of mussels and clams was investigated at seven hydrothermal vent fields of the Mid-Atlantic Ridge (Menez Gwen, Snake Pit, Rainbow, and Broken Spur) and the Eastern Pacific (9°N and 21°N at the East Pacific Rise and the southern trough of Guaymas Basin, Gulf of California). Mineralogical analysis showed that carbonate skeletons of mytilid mussel Bathymodiolus sp. and vesicomyid clam Calyptogena m. are composed mainly of calcite and aragonite, respectively. The first data were obtained for contents of a variety of chemical elements in bivalve carbonate shells from various hydrothermal vent sites. Analyses of chemical compositions (including Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Cr, Co, As, Se, Sb, and Hg) of 35 shell samples and 14 water samples from mollusk biotopes revealed influences of environmental conditions and some biological parameters on bioaccumulation of metals. Bivalve shells from hydrothermal fields with black smokers are enriched in Fe and Mn by factor of 20-30 relative to the same species from the Menez Gwen low-temperature vent site. It was shown that essential elements (Fe, Mn, Ni, and Cu) more actively accumulated during early ontogeny of the shells. High enrichment factors of most metals (n x 100 - n x 10000) indicate efficient accumulation function of bivalve carbonate shells. Passive metal accumulation owing to adsorption on shell surfaces was estimated to be no higher than 50% of total amount and varied from 14% for Fe to 46% for Mn.
Resumo:
Hydrothermal solutions were examined in a circulation system that started to develop after the 1991 volcanic eruption in the axial segment of the EPR between 9°45'N and 9°52'N. Within twelve years after this eruption, diffusion outflow of hot fluid from fractures in basaltic lavas gave way to focused seeps of hot solutions through channels of hydrothermal sulfide edifices. An example of the field Q demonstrates that from 1991 to 2003 H2S concentrations decreased from 86 to 1 mM/kg, and the Fe/H2S ratio simultaneously increased by factor 1.7. This fact can explain disappearance of microbial mats that were widespread within the fields before 1991. S isotopic composition of H2S does not depend on H2S concentration. This fact testifies rapid evolution of the hydrothermal system in the early years of its evolution. Carbon in CH4 from hot fluid sampled in 2003 is richer in 12C isotope than carbon in fluid from the hydrothermal field at 21°N EPR. It suggests that methane comes to the Q field from more than one source. Composition of particulate matter in hydrothermal solutions indicates that it was contributed by biological material. Experimental solutions with labeled substrates (t<70°C) show evidence of active processes of methane oxidation and sulfate reduction. Our results indicate that, during 12-year evolution of the hydrothermal system, composition of its solutions evolved and approached compositions of solutions in mature hydrothermal systems of the EPR.