996 resultados para EXTERNAL LOAD


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many structures and mechanical equipment requires a union member, and the screw is one of the most used, the cost is low, it is versatile and easy to find on the market. The resulting pre-load assembly torque associated with the cyclical external load has great influence, so it will be studied carefully. This study analyzed some of these factors, as the format of nuts, and the washer material when they are incompatible with the bolt material can cause a reduction in life of the joint fatigue

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Barroso, R, Tricoli, V, dos Santos Gil, S, Ugrinowitsch, C, and Roschel, H. Maximal strength, number of repetitions, and total volume are differently affected by static-, ballistic-, and proprioceptive neuromuscular facilitation stretching. J Strength Cond Res 26(9): 2432-2437, 2012-Stretching exercises have been traditionally incorporated into warm-up routines before training sessions and sport events. However, the effects of stretching on maximal strength and strength endurance performance seem to depend on the type of stretching employed. The objective of this study was to compare the effects of static stretching (SS), ballistic stretching (BS), and proprioceptive neuromuscular facilitation (PNF) stretching on maximal strength, number of repetitions at a submaximal load, and total volume (i.e., number of repetitions 3 external load) in a multiple-set resistance training bout. Twelve strength-trained men (20.4 +/- 4.5 years, 67.9 +/- 6.3 kg, 173.3 +/- 8.5 cm) volunteered to participate in this study. All of the subjects completed 8 experimental sessions. Four experimental sessions were designed to test maximal strength in the leg press (i.e., 1 repetition maximum [1RM]) after each stretching condition (SS, BS, PNF, or no-stretching [NS]). During the other 4 sessions, the number of repetitions performed at 80% 1RM was assessed after each stretching condition. All of the stretching protocols significantly improved the range of motion in the sit-and-reach test when compared with NS. Further, PNF induced greater changes in the sit-and-reach test than BS did (4.7 +/- 1.6, 2.9 +/- 1.5, and 1.9 +/- 1.4 cm for PNF, SS, and BS, respectively). Leg press 1RM values were decreased only after the PNF condition (5.5%, p < 0.001). All the stretching protocols significantly reduced the number of repetitions (SS: 20.8%, p < 0.001; BS: 17.8%, p = 0.01; PNF: 22.7%, p < 0.001) and total volume (SS: 20.4%, p < 0.001; BS: 17.9%, p = 0.01; PNF: 22.4%, p < 0.001) when compared with NS. The results from this study suggest that, to avoid a decrease in both the number of repetitions and total volume, stretching exercises should not be performed before a resistance training session. Additionally, strength-trained individuals may experience reduced maximal dynamic strength after PNF stretching.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis was driven by the ambition to create suitable model systems that mimic complex processes in nature, like intramolecular transitions, such as unfolding and refolding of proteins, or intermolecular interactions between different cell compo-nents. Novel biophysical approaches were adopted by employing atomic force mi-croscopy (AFM) as the main measurement technique due to its broad diversity. Thus, high-resolution imaging, adhesion measurements, and single-molecule force distance experiments were performed on the verge of the instrumental capabilities. As first objective, the interaction between plasma membrane and cytoskeleton, me-diated by the linker protein ezrin, was pursued. Therefore, the adsorption process and the lateral organization of ezrin on PIP2 containing solid-supported membranes were characterized and quantified as a fundament for the establishment of a biomimetic model system. As second component of the model system, actin filaments were coated on functionalized colloidal probes attached on cantilevers, serving as sensor elements. The zealous endeavor of creating this complex biomimetic system was rewarded by successful investigation of the activation process of ezrin. As a result, it can be stated that ezrin is activated by solely binding to PIP2 without any further stimulating agents. Additional cofactors may stabilize and prolong the active conformation but are not essentially required for triggering ezrin’s transformation into an active conformation. In the second project, single-molecule force distance experiments were performed on bis-loop tetra-urea calix[4]arene-catenanes with different loading rates (increase in force per second). These macromolecules were specifically designed to investigate the rupture and rejoining mechanism of hydrogen bonds under external load. The entangled loops of capsule-like molecules locked the unbound state of intramolecular hydrogen bonds mechanically, rendering a rebinding observable on the experimental time scale. In conjunction with Molecular Dynamics simulations, a three-well potential of the bond rupture process was established and all kinetically relevant parameters of the experiments were determined by means of Monte Carlo simulations and stochastic modeling. In summary, it can be stated that atomic force microscopy is an invaluable tool to scrutinize relevant processes in nature, such as investigating activation mechanisms in proteins, as shown by analysis of the interaction between F-actin and ezrin, as well as exploring fundamental properties of single hydrogen bonds that are of paramount interest for the complete understanding of complex supramolecular structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shell structure is widely used in engineering area. The purpose of this dissertation is to show the behavior of a thin shell under external load, especially for long cylindrical shell under compressive load, I analyzed not only for linear elastic problem and also for buckling problem, and by using finite element analysis it shows that the imperfection of a cylinder could affect the critical load which means the buckling capability of this cylinder. For linear elastic problem, I compared the theoretical results with the results got from Straus7 and Abaqus, and the results are really close. For the buckling problem I did the same: compared the theoretical and Abaqus results, the error is less than 1%, but in reality, it’s not possible to reach the theoretical buckling capability due to the imperfection of the cylinder, so I put different imperfection for the cylinder in Abaqus, and found out that with the increasing of the percentage of imperfection, the buckling capability decreases, for example 10% imperfection could decrease 40% of the buckling capability, and the outcome meet the buckling behavior in reality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this project was to evaluate the present state and possible changes of water resources in Lake Ladoga and its drainage basin for the purposes of the sustainable development of North-Western Russia and Finland. The group assessed the state of the water resources in quantitative and qualitative terms, taking the system of sustainable development indicators suggested by the International Commission on Sustainable Development as a basis for assessment. These include pressure indicators (annual withdrawals of ground and surface water, domestic consumption of water per capita), state indicators (ground water reserves, concentration of faecalcoliform in fresh water, biochemical oxygen demand), and response indicators (waste-water treatment coverage, density of hydrological networks). The group proposed the following additional indicators and indices for the complex evaluation of the qualitative and quantitative state of the region's water resources: * Pressure indicators (external load, coefficient of anthropogenic pressure) * State indicators and indices (concentrations of chemicals in water, concentrations of chemicals in sediments, index of water pollution, critical load, critical limit, internal load, load/critical load, concentration/critical limit, internal load/external load, trophic state, biotic indicators and indices) * Response indicators (discharges of pure water, polluted water, partly treated water and the ratio between these, trans-boundary fluxes of pollutants, state expenditure on environmental protection, human life span) The assessment considered both temporal and spatial aspects and produced a regional classification of the area according to the index of water pollution. Mathematical models were developed to describe and forecast the processes under way in the lake and can be used to estimate the influence of climatic changes on the hydrological regime, as well as the influence of anthropogenic load on the trophic state of Lake Ladoga and to assess the consequences of accidental discharges of polluting admixtures of different kinds into the lake. The results of this mathematical modelling may be of use to decision-makers responsible for the management of water resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La presente tesis doctoral estudia las características de un transductor acústico bioinspirado en la estructura del maxilar inferior de un Zifio de Couvier (Ziphius cavirostris). El mecanismo de funcionamiento del sensor se basa en las características de un sistema acoplado formado por los distintos componentes acústicos identificados en el maxilar. Para analizar las características del sensor se propone un modelo simplificado 2D que consta de una cavidad cerrada con forma de bocina acoplada a una lengüeta. Una parte de la lengüeta se encuentra dentro de la cavidad y otra en el exterior. Dicha lengüeta detecta los cambios de presión acústica y las vibraciones generadas por el sonido y las transmite con ondas de flexión al interior de la cavidad. La excitación prolongada sobre la placa puede provocar la activación de los modos propios del sistema acoplado. Dichos modos se caracterizan porque presentan un máximo de presión en el cono de la bocina la cual a su vez actúa como un amplificador acústico. Mediante el Método de los elementos Finitos se analizan las características acústicas del sensor y se construye un prototipo experimental para validar los resultados evaluados en el modelo numérico. Se propone una metodología numérica que permite desarrollar y validar un elemento tetraédrico para caracterizar el comportamiento isotrópico de los medios porosos. La metodología permite construir elementos de línea y bidimensionales. A partir de esta metodología se desarrolla un elemento plano ortotrópico. Se realiza un modelo de la cavidad en el que una de las paredes de la bocina está constituida por material poroso y se une la parte exterior de la lengüeta a dicho material para que constituya una viga sobre un apoyo elástico. Se calcula la respuesta modal y se discuten los efectos del material poroso en la eficiencia del transductor y las posibles mejoras a introducir en el mismo. SUMMARY This Thesis studies the characteristics of an acoustic transducer bioinspired by the structure of the lower maxilla of an odontoceto. In this case a Cuvier’s beaked whale (Ziphius cavirostris). The transducer working mechanism is based in a coupled system, with components identified in the maxilla. To analyze the transducer a simplified 2D model composed by a horn shaped closed cavity is modeled. The cavity is coupled with a flat belt. The belt has one part inside the cavity and the other part outside of it. The belt traverses the cavity wall and it is in charge to pick the vibrations from outside and introduce it inside the cavity. The transmission is obtained through the belt bending. A sustained external load with the right frequency contents will allow the system to reach a stationary pressure intensity distribution inside the cavity. Frequencies with modal shapes that show an important intensity increase at the horn tip are of special interest because of the signal amplification. A finite element model is constructed to study the transducer coupled modes and a prototype is constructed to validate the numerical results. A numerical methodology to construct and validate a tetrahedral finite element for isotropic porous materials is presented. The methodology allows constructing linear and 2D elements. It is extended to model orthotropic porous materials behavior. At the end, one of the horn walls is made of an orthotropic material and the external belt is glued to it in order to configure a belt over an elastic foundation. Modal response is evaluated and the porous material effects in the transducer efficiency and further improvements are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Corrosion of reinforcing steel in concrete due to chloride ingress is one of the main causes of the deterioration of reinforced concrete structures. Structures most affected by such a corrosion are marine zone buildings and structures exposed to de-icing salts like highways and bridges. Such process is accompanied by an increase in volume of the corrosión products on the rebarsconcrete interface. Depending on the level of oxidation, iron can expand as much as six times its original volume. This increase in volume exerts tensile stresses in the surrounding concrete which result in cracking and spalling of the concrete cover if the concrete tensile strength is exceeded. The mechanism by which steel embedded in concrete corrodes in presence of chloride is the local breakdown of the passive layer formed in the highly alkaline condition of the concrete. It is assumed that corrosion initiates when a critical chloride content reaches the rebar surface. The mathematical formulation idealized the corrosion sequence as a two-stage process: an initiation stage, during which chloride ions penetrate to the reinforcing steel surface and depassivate it, and a propagation stage, in which active corrosion takes place until cracking of the concrete cover has occurred. The aim of this research is to develop computer tools to evaluate the duration of the service life of reinforced concrete structures, considering both the initiation and propagation periods. Such tools must offer a friendly interface to facilitate its use by the researchers even though their background is not in numerical simulation. For the evaluation of the initiation period different tools have been developed: Program TavProbabilidade: provides means to carry out a probability analysis of a chloride ingress model. Such a tool is necessary due to the lack of data and general uncertainties associated with the phenomenon of the chloride diffusion. It differs from the deterministic approach because it computes not just a chloride profile at a certain age, but a range of chloride profiles for each probability or occurrence. Program TavProbabilidade_Fiabilidade: carries out reliability analyses of the initiation period. It takes into account the critical value of the chloride concentration on the steel that causes breakdown of the passive layer and the beginning of the propagation stage. It differs from the deterministic analysis in that it does not predict if the corrosion is going to begin or not, but to quantifies the probability of corrosion initiation. Program TavDif_1D: was created to do a one dimension deterministic analysis of the chloride diffusion process by the finite element method (FEM) which numerically solves Fick’second Law. Despite of the different FEM solver already developed in one dimension, the decision to create a new code (TavDif_1D) was taken because of the need to have a solver with friendly interface for pre- and post-process according to the need of IETCC. An innovative tool was also developed with a systematic method devised to compare the ability of the different 1D models to predict the actual evolution of chloride ingress based on experimental measurements, and also to quantify the degree of agreement of the models with each others. For the evaluation of the entire service life of the structure: a computer program has been developed using finite elements method to do the coupling of both service life periods: initiation and propagation. The program for 2D (TavDif_2D) allows the complementary use of two external programs in a unique friendly interface: • GMSH - an finite element mesh generator and post-processing viewer • OOFEM – a finite element solver. This program (TavDif_2D) is responsible to decide in each time step when and where to start applying the boundary conditions of fracture mechanics module in function of the amount of chloride concentration and corrosion parameters (Icorr, etc). This program is also responsible to verify the presence and the degree of fracture in each element to send the Information of diffusion coefficient variation with the crack width. • GMSH - an finite element mesh generator and post-processing viewer • OOFEM – a finite element solver. The advantages of the FEM with the interface provided by the tool are: • the flexibility to input the data such as material property and boundary conditions as time dependent function. • the flexibility to predict the chloride concentration profile for different geometries. • the possibility to couple chloride diffusion (initiation stage) with chemical and mechanical behavior (propagation stage). The OOFEM code had to be modified to accept temperature, humidity and the time dependent values for the material properties, which is necessary to adequately describe the environmental variations. A 3-D simulation has been performed to simulate the behavior of the beam on both, action of the external load and the internal load caused by the corrosion products, using elements of imbedded fracture in order to plot the curve of the deflection of the central region of the beam versus the external load to compare with the experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Growth and biomechanics of etiolated hypocotyls from Arabidopsis thaliana lines overexpressing xyloglucan endotransglucosylase/hydrolase AtXTH18, AtXTH19, AtXTH20, and PttXET16-34 were studied. Overexpression of AtXTH18, AtXTH19, and AtXTH20 stimulated growth of hypocotyls, while PttXET16-34 overexpression did not show this effect. In vitro extension of frozen/thawed hypocotyls measured by a constant-load extensiometer started from a high-amplitude initial deformation followed by a slow time-dependent creep. Creep of growing XTH-overexpressing (OE) hypocotyls was more linear in time compared with the wild type at pH 5.0, reflecting their higher potential for long-term extension. XTH-OE plants deposited 65?84% more cell wall material per hypocotyl cross-sectional area than wild-type plants. As a result, their wall stress under each external load was lower than in the wild-type. Growing XTH-OE hypocotyls had higher values of initial deformation·stress?1 compared with the wild type. Plotting creep rates for each line under different loads against the respective wall stress values gave straight lines. Their slopes and intercepts with the abscissa correspond to ? (in vitro cell wall extensibility) and y (in vitro cell wall yield threshold) values characterizing cell wall material properties. The wall material in XTH-OE lines was more pliant than in the wild type due to lower y values. In contrast, the acid-induced wall extension in vitro resulted from increasing ? values. Thus, three factors contributed to the XTH-OE-stimulated growth in Arabidopsis hypocotyls: their more linear creep, higher values of initial deformation·stress?1, and lower y values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The usage of more inexpensive silicon feedstock for crystallizing mc-Si blocks promises cost reduction for the photovoltaic market. For example, less expensive substrates of upgraded metallurgical silicon (UMG-Si) are used as a mechanical support for the epitaxial solar cell. This feedstock has higher content of impurities which influences cell performance and mechanical strength of the wafers. Thus, it is of importance to know these effects in order to know which impurities should be preferentially removed or prevented during the crystallization process. Metals like aluminum (Al) can decrease the mechanical strength due to micro-cracking of the silicon matrix and introduction of high values of thermal residual stress. Additionally, silicon oxide (SiOx) lowers the mechanical strength of mc-Si due to thermal residual stresses and stress intensification when an external load is applied in the surrounding of the particle. Silicon carbide (SiC) introduces thermal residual stresses and intensifies slightly the stress in the surrounding of the particle but can have a toughening effect on the silicon matrix. Finally, silicon nitride (Si3N4) does not influence significantly the mechanical strength of mc- Si and can have a toughening effect on the silicon matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Load and resistance factor design (LRFD) approach for the design of reinforced soil walls is presented to produce designs with consistent and uniform levels of risk for the whole range of design applications. The evaluation of load and resistance factors for the reinforced soil walls based on reliability theory is presented. A first order reliability method (FORM) is used to determine appropriate ranges for the values of the load and resistance factors. Using pseudo-static limit equilibrium method, analysis is conducted to evaluate the external stability of reinforced soil walls subjected to earthquake loading. The potential failure mechanisms considered in the analysis are sliding failure, eccentricity failure of resultant force (or overturning failure) and bearing capacity failure. The proposed procedure includes the variability associated with reinforced backfill, retained backfill, foundation soil, horizontal seismic acceleration and surcharge load acting on the wall. Partial factors needed to maintain the stability against three modes of failure by targeting component reliability index of 3.0 are obtained for various values of coefficients of variation (COV) of friction angle of backfill and foundation soil, distributed dead load surcharge, cohesion of the foundation soil and horizontal seismic acceleration. A comparative study between LRFD and allowable stress design (ASD) is also presented with a design example. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper an artificial neural network (ANN) based methodology is proposed for (a) solving the basic load flow, (b) solving the load flow considering the reactive power limits of generation (PV) buses, (c) determining a good quality load flow starting point for ill-conditioned systems, and (d) computing static external equivalent circuits. An analysis of the input data required as well as the ANN architecture is presented. A multilayer perceptron trained with the Levenberg-Marquardt second order method is used. The proposed methodology was tested with the IEEE 30- and 57-bus, and an ill-conditioned 11-bus system. Normal operating conditions (base case) and several contingency situations including different load and generation scenarios have been considered. Simulation results show the excellent performance of the ANN for solving problems (a)-(d). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"11 February 1991"--Vol. 2, P. i.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iconic and significant buildings are the common target of bombings by terrorists causing large numbers of casualties and extensive property damage. Recent incidents were external bomb attacks on multi-storey buildings with reinforced concrete frames. Under a blast load circumstance, crucial damage initiates at low level storeys in a building and may then lead to a progressive collapse of whole or part of the structure. It is therefore important to identify the critical initial influence regions along the height, width and depth of the building exposed to blast effects and the structure response in order to assess the vulnerability of the structure to disproportionate and progressive collapse. This paper discusses the blast response and the propagation of its effects on a two dimensional reinforced concrete (RC) frame, designed to withstand normal gravity loads. The explicit finite element code, LS DYNA is used for the analysis. A complete RC portal frame seven storeys by six bays is modelled with reinforcement details and appropriate materials to simulate strain rate effects. Explosion loads derived from standard manuals are applied as idealized triangular pressures on the column faces of the numerical models. The analysis reports the influence of blast propagation as displacements and material yielding of the structural elements in the RC frame. The effected regions are identified and classified according to the load cases. This information can be used to determine the vulnerability of multi-storey RC buildings to various external explosion scenarios and designing buildings to resist blast loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-storey buildings are highly vulnerable to terrorist bombing attacks in various parts of the world. Large numbers of casualties and extensive property damage result not only from blast overpressure, but also from the failing of structural components. Understanding the blast response and damage consequences of reinforced concrete (RC) building frames is therefore important when assessing multi-storey buildings designed to resist normal gravity loads. However, limited research has been conducted to identify the blast response and damage of RC frames in order to assess the vulnerability of entire buildings. This paper discusses the blast response and evaluation of damage of three-dimension (3D) RC rigid frame under potential blast loads scenarios. The explicit finite element modelling and analysis under time history blast pressure loads were carried out by LS DYNA code. Complete 3D RC frame was developed with relevant reinforcement details and material models with strain rate effect. Idealised triangular blast pressures calculated from standard manuals are applied on the front face of the model in the present investigation. The analysis results show the blast response, as displacements and material yielding of the structural elements in the RC frame. The level of damage is evaluated and classified according to the selected load case scenarios. Residual load carrying capacities are evaluated and level of damage was presented by the defined damage indices. This information is necessary to determine the vulnerability of existing multi-storey buildings with RC frames and to identify the level of damage under typical external explosion environments. It also provides basic guidance to the design of new buildings to resist blast loads.