978 resultados para EXERCISE TOLERANCE


Relevância:

70.00% 70.00%

Publicador:

Resumo:

beta(2)-adrenergic receptor (beta(2)-AR) agonists have been used as ergogenics by athletes involved in training for strength and power in order to increase the muscle mass. Even though anabolic effects of beta(2)-AR activation are highly recognized, less is known about the impact of beta(2)-AR in endurance capacity. We presently used mice lacking beta(2)-AR [beta(2)-knockout (beta(2) KO)] to investigate the role of beta(2)-AR on exercise capacity and skeletal muscle metabolism and phenotype. beta(2) KO mice and their wild-type controls (WT) were studied. Exercise tolerance, skeletal muscle fiber typing, capillary-to-fiber ratio, citrate synthase activity and glycogen content were evaluated. When compared with WT, beta 2KO mice displayed increased exercise capacity (61%) associated with higher percentage of oxidative fibers (21% and 129% of increase in soleus and plantaris muscles, respectively) and capillarity (31% and 20% of increase in soleus and plantaris muscles, respectively). In addition, beta 2KO mice presented increased skeletal muscle citrate synthase activity (10%) and succinate dehydrogenase staining. Likewise, glycogen content (53%) and periodic acid-Schiff staining (glycogen staining) were also increased in beta 2KO skeletal muscle. Altogether, these data provide evidence that disruption of beta(2)AR improves oxidative metabolism in skeletal muscle of beta 2KO mice and this is associated with increased exercise capacity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aerobic exercise training (ET) has been established as an important non-pharmacological treatment of hypertension, since it decreases blood pressure. Studies show that the skeletal muscle abnormalities in hypertension are directly associated with capillary rarefaction, higher percentage of fast-twitch fibers (type II) with glycolytic metabolism predominance and increased muscular fatigue. However, little is known about these parameters in hypertension induced by ET. We hypothesized that ET corrects capillary rarefaction, potentially contributing to the restoration of the proportion of muscle fiber types and metabolic proprieties. Twelve-week old Spontaneously Hypertensive Rats (SHR, n=14) and Wistar Kyoto rats (WKY, n=14) were randomly assigned into 4 groups: SHR, trained SHR (SHR-T), WKY and trained WKY (WKY-T). As expected, ten weeks of ET was effective in reducing blood pressure in SHR-T group. In addition, we analyzed the main markers of ET. Resting bradycardia, increase of exercise tolerance, peak oxygen uptake and citrate synthase enzyme activity in trained groups (WKY-T and SHR-T) showed that the aerobic condition was achieved. ET also corrected the skeletal muscle capillary rarefaction in SHR-T. In parallel, we observed reduction in percentage of type IIA and IIX fibers and simultaneous augmented percentage of type I fibers induced by ET in hypertension. These data suggest that ET prevented changes in soleus fiber type composition in SHR, since angiogenesis and oxidative enzyme activity increased are important adaptations of ET, acting in the maintenance of muscle oxidative metabolism and fiber profile.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: Aerobic exercise training has been established as an important nonpharmacological treatment for hypertension. We investigated whether the number and function of endothelial progenitor cells (EPCs) are restored after exercise training, potentially contributing to neovascularization in hypertension. Methods: Twelve-week-old male spontaneously hypertensive rats (SHRs, n = 14) and Wistar Kyoto (WKY, n = 14) rats were assigned to four groups: SHR; trained SHR (SHR-T); WKY; and trained WKY. Exercise training consisted of 10 weeks of swimming. EPC number and function, as well as the vascular endothelial growth factor (VEGF), nitrotyrosine and nitrite concentration in peripheral blood were quantified by fluorescence-activated cell sorter analysis (CD34+/Flk1+ cells), colony-forming unit assay, ELISA and nitric oxide (NO) analyzer, respectively. Soleus capillary/fiber ratio and protein expression of VEGF and endothelial NO synthase (eNOS) by western blot were assessed. Results: Exercise training was effective in reducing blood pressure in SHR-T accompanied by resting bradycardia, an increase in exercise tolerance, peak oxygen uptake (VO2) and citrate synthase activity. In response to hypertension, the amount of peripheral blood-EPC and number of colonies were decreased in comparison with control levels. In contrast, exercise training normalized the EPC levels and function in SHR-T accompanied by an increase in VEGF and NO levels. In addition, oxidative stress levels were normalized in SHR-T. Similar results were found in the number and function of bone marrow EPC. Exercise training repaired the peripheral capillary rarefaction in hypertension by a signaling pathway VEGF/eNOS-dependent in SHR-T. Moreover, improvement in EPC was significantly related to angiogenesis. Conclusion: Our data show that exercise training repairs the impairment of EPC in hypertension, which could be associated with peripheral revascularization, suggesting a mechanism for its potential therapeutic: application in vascular diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca2+-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a nonpharmacological tool for heart failure therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Introduction Exercise training has emerged as a promising therapeutic strategy to counteract physical dysfunction in adult systemic lupus erythematosus. However, no longitudinal studies have evaluated the effects of an exercise training program in childhood-onset systemic lupus erythematosus (C-SLE) patients. The objective was to evaluate the safety and the efficacy of a supervised aerobic training program in improving the cardiorespiratory capacity in C-SLE patients. Methods Nineteen physically inactive C-SLE patients were randomly assigned into two groups: trained (TR, n = 10, supervised moderate-intensity aerobic exercise program) and non-trained (NT, n = 9). Gender-, body mass index (BMI)- and age-matched healthy children were recruited as controls (C, n = 10) for baseline (PRE) measurements only. C-SLE patients were assessed at PRE and after 12 weeks of training (POST). Main measurements included exercise tolerance and cardiorespiratory measurements in response to a maximal exercise (that is, peak VO2, chronotropic reserve (CR), and the heart rate recovery (ΔHRR) (that is, the difference between HR at peak exercise and at both the first (ΔHRR1) and second (ΔHRR2) minutes of recovery after exercise). Results The C-SLE NT patients did not present changes in any of the cardiorespiratory parameters at POST (P > 0.05). In contrast, the exercise training program was effective in promoting significant increases in time-to-exhaustion (P = 0.01; ES = 1.07), peak speed (P = 0.01; ES = 1.08), peak VO2 (P = 0.04; ES = 0.86), CR (P = 0.06; ES = 0.83), and in ΔHRR1 and ΔHRR2 (P = 0.003; ES = 1.29 and P = 0.0008; ES = 1.36, respectively) in the C-SLE TR when compared with the NT group. Moreover, cardiorespiratory parameters were comparable between C-SLE TR patients and C subjects after the exercise training intervention, as evidenced by the ANOVA analysis (P > 0.05, TR vs. C). SLEDAI-2K scores remained stable throughout the study. Conclusion A 3-month aerobic exercise training was safe and capable of ameliorating the cardiorespiratory capacity and the autonomic function in C-SLE patients. Trial registration NCT01515163.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We tested whether the better subjective exercise tolerance perceived by mountaineers after altitude acclimatization relates to enhanced exercise economy. Thirty-two mountaineers performed progressive bicycle exercise to exhaustion at 490 m and twice at 5533 m (days 6–7 and day 11), respectively, during an expedition to Mt. Muztagh Ata. Maximal work rate (Wmax) decreased from mean ± SD 356 ± 73 watts at 490 m to 191 ± 49 watts and 193 ± 45 watts at 5533 m, days 6–7 and day 11, respectively; corresponding maximal oxygen uptakes (VO2max) were 50.7 ± 9.5, 26.3 ± 5.6, 24.7 ± 7.0 mL/min/kg (P = 0.0001 5533 m vs 490 m). On days 6–7 (5533 m), VO2 at 75% Wmax (152 ± 37 watts) was 1.75 ± 0.45 L/min, oxygen saturation 68 ± 8%. On day 11 (5533 m), at the same submaximal work rate, VO2 was lower (1.61 ± 0.47 L/min, P < 0.027) indicating improved net efficiency; oxygen saturation was higher (74 ± 7%, P < 0.0004) but ratios of VO2 to work rate increments remained unchanged. On day 11, mountaineers climbed faster from 4497 m to 5533 m than on days 5–6 but perceived less effort (visual analog scale 50 ± 15 vs 57 ± 20, P = 0.006) and reduced symptoms of acute mountain sickness. We conclude that the better performance and subjective exercise tolerance after acclimatization were related to regression of acute mountain sickness and improved submaximal exercise economy because of lower metabolic demands for non-external work-performing functions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reduced exercise tolerance and dyspnea during exercise are hallmarks of heart failure syndrome. Exercise capacity and various parameters of cardiopulmonary response to exercise are of important prognostic value. All the available parameters only indirectly reflect left ventricular dysfunction and hemodynamic adaptation to an increased demand. Noninvasive assessment of cardiac output, especially during an incremental exercise stress test, would allow the direct measure of cardiac reserve and may become the gold standard for prognostic evaluation in the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With lengthening (eccentric) muscle contractions, the magnitude of locomotor-muscle mass and strength increase has been demonstrated to be greater compared with shortening (concentric) muscle contractions. In healthy subjects, energy demand and heart rate responses with eccentric exercise are small relative to the amount of muscle force produced. Thus, eccentric exercise may be an attractive alternative to resistance exercise for patients with limited cardiovascular exercise tolerance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introdução: As doenças cardiovasculares são a principal causa de morte na Europa e o sedentarismo é um dos seus principais fatores de risco. Os programas de reabilitação cardiovascular (RCV) no domicílio parecem ser eficazes na tolerância ao exercício. No entanto, torna-se difícil reproduzir um protocolo de exercícios no domicílio, por se tratar de estudos pouco específicos. Objetivo: Avaliar os efeitos de um programa de exercícios específico realizado no domicílio, na tolerância ao exercício em pacientes integrados num programa RCV. Metodologia: Estudo quase experimental composto por 20 indivíduos com pelo menos um ano de enfarte agudo do miocárdio, distribuídos aleatoriamente em dois grupos: grupo experimental (GE) e grupo de controlo (GC), ambos com 10 indivíduos. O programa de RCV no domicílio (constituído por 10 exercícios) teve a duração de 8 semanas, com uma frequência de 3 vezes por semana. Avaliou-se a frequência cardíaca (FC), tensão arterial e duplo produto basais e máximos; FC de recuperação; equivalentes metabólicos (METs); velocidade; inclinação; tempo de prova e de recuperação; índice cifótico; equilíbrio; e tempo em atividade moderada a vigorosa. Resultados: Ao fim de 8 semanas de exercício o GE aumentou significativamente os MET’s (p=0,001), tensão arterial sistólica máxima (p<0,001), duplo produto máximo (p<0,001) e tempo de prova (p=0,037) e diminuiu significativamente o tempo de recuperação (p<0,001), quando comparado com o GC. Conclusão: O programa de exercícios no domicílio promoveu uma melhoria na tolerância ao exercício e parece ter melhorado o equilíbrio, para a amostra em estudo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

COPD is associated with some skeletal muscle dysfunction which contributes to a poor exercise tolerance. This dysfunction results from multiple factors: physical inactivity, corticosteroids, smoking, malnutrition, anabolic deficiency, systemic inflammation, hypoxia, oxidative stress. Respiratory rehabilitation is based on exercise training and allows patients with COPD to experience less dyspnoea, and to improve their exercise tolerance and quality of life. Not all patients, however, benefit from rehabilitation. Acknowledging the different factors leading to muscular dysfunction allows one to foresee new avenues to improve efficacy of exercise training in COPD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’insuffisance cardiaque est une pathologie provoquant une diminution importante des capacités fonctionnelles des patients ainsi qu’une diminution drastique de la qualité de vie. L’évaluation des capacités fonctionnelles est généralement effectuée par une épreuve d’effort maximal. Cependant pour plusieurs patients, cet effort est difficile à compléter. Les objectifs de l’étude présentée dans ce mémoire sont : (1) valider trois méthodes d’évaluation de la capacité fonctionnelle et aérobie des sujets souffrant d’insuffisance cardiaque avec un complexe QRS élargi; (2) chercher à établir le profil des patients démontrant une meilleure tolérance à l’exercice malgré une consommation maximale d’oxygène identique; et (3) démontrer les conséquences de la présence et de la magnitude de l’asynchronisme cardiaque dans la capacité fonctionnelle et la tolérance à l’exercice. Tous les sujets ont été soumis à un test de marche de six minutes, un test d’endurance à charge constante sur tapis roulant et à une épreuve d’effort maximal avec mesure d’échanges gazeux à la bouche. Les résultats ont montré une association significative entre les épreuves maximale et plus spécifiquement sous-maximale. De plus, une meilleure tolérance à l’exercice serait associée significativement à une plus grande masse du ventricule gauche. Finalement, les résultats de notre étude n’ont pas montré d’effet d’un asynchronisme cardiaque sur la performance à l’effort tel qu’évalué par nos protocoles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las enfermedades pulmonares crónicas son muy frecuentes en la población mayor de 40 años y es superior en los países con un alto consumo de cigarrillo; han sido durante muchos años consideradas como un problema grave de salud pública, el cual va en aumento de manera acelerada en Colombia y en el mundo debido a su alta incidencia e impacto sobre la calidad de vida de quien la padece y de su familia.La Asociación Colombiana de Neumología y Cirugía de Tórax junto a la Fundación Neumológica Colombiana realizó un estudio acerca de la Prevalencia de la Enfermedad Pulmonar Obstructiva Crónica (EPOC) en Colombia (Prepocol).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skeletal muscle phenotype plays a critical role in human performance and health, and skeletal muscle oxidative capacity is a key determinant of exercise tolerance. More recently, defective muscle oxidative metabolism has been implicated in a number of conditions associated with the metabolic syndrome, cardiovascular disease and muscle-wasting disorders. AMPK (AMP-activated protein kinase) is a critical regulator of cellular and organismal energy balance. AMPK has also emerged as a key regulator of skeletal muscle oxidative function, including metabolic enzyme expression, mitochondrial biogenesis and angiogenesis. AMPK mediates these processes primarily through alterations in gene expression. The present review examines the role of AMPK in skeletal muscle transcription and provides an overview of the known transcriptional substrates mediating the effects of AMPK on skeletal muscle phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background : The Angiotensin Converting Enzyme (ACE) gene may influence the risk of heart disease and the response to various forms of exercise training may be at least partly dependent on the ACE genotype. We aimed to determine the effect of ACE genotype on the response to moderate intensity circuit resistance training in chronic heart failure (CHF) patients.

Methods :
The relationship between ACE genotype and the response to 11 weeks of resistance exercise training was determined in 37 CHF patients (New York Heart Association Functional Class = 2.3 ± 0.5; left ventricular ejection fraction 28 ± 7%; age 64 ± 12 years; 32:5 male:female) who were randomised to either resistance exercise (n = 19) or inactive control group (n = 18). Outcome measures included VO2peak power output and muscle strength and endurance. ACE genotype was determined using standard methods.

Results :
At baseline, patients who were homozygous for the I allele had higher VO2peak (p = 0.02) and peak power (p = 0.003) compared to patients who were homozygous for the D allele. Patients with the D allele, who were randomised to resistance training, compared to non-exercising controls, had greater peak power increases (ID p < 0.001; DD p < 0.001) when compared with patients homozygous for the I allele, who did not improve. No significant genotype-dependent changes were observed in VO2peak, muscle strength, muscle endurance or lactate threshold.

Conclusion :
ACE genotype may have a role in exercise tolerance in CHF and could also influence the effectiveness of resistance training in this condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background : We aimed to determine the role of skeletal muscle mitochondrial ATP production rate (MAPR) in relation to exercise tolerance after resistance training (RT) in chronic heart failure (CHF).

Methods and Results : Thirteen CHF patients (New York Heart Association functional class 2.3 ± 0.5; Left ventricular ejection fraction 26 ± 8%; age 70 ± 8 years) underwent testing for peak total body oxygen consumption (VO2peak), and resting vastus lateralis muscle biopsy. Patients were then randomly allocated to 11 weeks of RT (n = 7), or continuance of usual care (C; n = 6), after which testing was repeated. Muscle samples were analyzed for MAPR, metabolic enzyme activity, and capillary density. VO2peak and MAPR in the presence of the pyruvate and malate (P+M) substrate combination, representing carbohydrate metabolism, increased in RT (P < .05) and decreased in C (P < .05), with a significant difference between groups (VO2peak, P = .005; MAPR, P = .03). There was a strong correlation between the change in MAPR and the change in peak total body oxygen consumption (VO2peak) over the study (r = 0.875; P < .0001), the change in MAPR accounting for 70% of the change in VO2peak.

Conclusions : These findings suggest that mitochondrial ATP production is a major determinant of aerobic capacity in CHF patients and can be favorably altered by muscle strengthening exercise.