969 resultados para EXERCISE PERFORMANCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to examine the effect of creatine supplementation (CrS) on sprint exercise performance and skeletal muscle anaerobic metabolism during and after sprint exercise. Eight active, untrained men performed a 20-s maximal sprint on an air-braked cycle ergometer after 5 days of CrS [30 g creatine (Cr) + 30 g dextrose per day] or placebo (30 g dextrose per day). The trials were separated by 4 wk, and a double-blind crossover design was used. Muscle and blood samples were obtained at rest, immediately after exercise, and after 2 min of passive recovery. CrS increased the muscle total Cr content (9.5 ± 2.0%, P < 0.05, mean ± SE); however, 20-s sprint performance was not improved by CrS. Similarly, the magnitude of the degradation or accumulation of muscle (e.g., adenine nucleotides, phosphocreatine, inosine 5′-monophosphate, lactate, and glycogen) and plasma metabolites (e.g., lactate, hypoxanthine, and ammonia/ammonium) were also unaffected by CrS during exercise or recovery. These data demonstrated that CrS increased muscle total Cr content, but the increase did not induce an improved sprint exercise performance or alterations in anaerobic muscle metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study aimed to examine the effect of glycemic index of pre-exercise carbohydrate (CHO) ingestion on exercise metabolism and performance.

Methods: Eight endurance trained men ingested a high glycemic index (HGI), low glycemic index (LGI), or a placebo (CON) meal 45 min before exercise and then cycled for 50 min at 67% V·O2max. Subjects subsequently performed a 15-min self-paced performance ride in which total work (kJ) was recorded.

Results: Plasma glucose concentrations were higher (P < 0.01) after ingestion in HGI compared with LGI and CON (7.53 ± 0.64 vs 5.55 ± 0.21 and 4.65 ± 0.14 mmol·L-1 for HGI, LGI, and CON, respectively, 30 min postprandial; mean ± SE) but declined at the onset of exercise and were lower (P < 0.01) compared with LGI and CON (4.03 ± 0.31 vs 4.64 ± 0.24 and 5.09 ± 0.16 mmol·L-1 for HGI, LGI, and CON respectively; mean ± SE) at 10 min of exercise. Plasma glucose remained depressed (P < 0.01) until 30 min into exercise in HGI compared with other trials. Plasma insulin concentrations were higher (P < 0.01) following ingestion during rest and exercise in HGI compared with LGI and CON. Plasma FFA concentrations were lower (P < 0.05) following ingestion in HGI and LGI compared with CON and higher (P < 0.05) in LGI compared with HGI at the start and end of exercise. RER and CHO oxidation was higher (P < 0.01) in HGI compared with LGI and CON during submaximal exercise. There were no differences in work output during the performance cycle.


Conclusions: These data indicate that pre-exercise CHO feedings with varying glycemic indexes do not affect exercise performance following short term submaximal exercise despite alterations in metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While elite Olympic distance triathletes consume adequate carbohydrate pre-competition, many fail to meet suggested guidelines during actual competition. Furthermore, metabolic adaptations that occur in response to training appear similar under varying conditions of carbohydrate availability. However, daily training with high carbohydrate availability increases the use of carbohydrate consumed during exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of preferred and nonpreferred music on exercise distance, Heart Rate (HR), and Rating of Perceived Exertion (RPE) during continuous cycling exercise performed at high intensity Fifteen participants performed five test sessions During two sessions, they cycled with fixed workload on ergometer to determine the Critical Power (Cl') intensity Then, they performed three more sessions cycling at CP intensity listening to Preferred Music, listening to Nonpreferred Music, and No Music The HR responses in the exercise sessions did not differ among all conditions However, the RPE was higher for Nonpreferred Music than in the other conditions The performance under Preferred Music (9 8 +/- 4 6km) was greater than under Nonpreferred Music (7 1 +/- 3 5km) conditions Therefore, listening to Preferred Music during continuous cycling exercise at high intensity can Increase the exercise distance, and individuals listening to Nonpreferred Music can perceive more discomfort caused by the exercise

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dyer and McKune (2013) stated that music tempo has no influence on performance, physiological, and psychophysical variables in well-trained cyclists during high intensity endurance tasks. However, there are important limitations in the methodology of the study. The participants'music preferences and tempo change were not well measured. It is not possible to affirm that music tempo does not influence athletes'performance. Potential areas of future research include: (a) use of instruments to assess the qualities of music; (b) standardizing music of tempo according to exercise type (e.g., running, cycling, etc.); (c) considering training level of the participants (i.e., athletes and non-athletes); and (d) use of instruments to assess concentration during exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Lymphangioleiomyomatosis (LAM) is characterized by exercise performance impairment. Although airflow limitation is common, no previous studies have evaluated the prevalence and impact of dynamic hyperinflation (DH) in LAM. Objectives: To investigate the dynamic responses during maximal exercise and the prevalence, predictors, and repercussions of DH in LAM. Methods: Forty-two patients with LAM performed symptom-limited incremental cycle exercise and pulmonary functions tests (PFTs) and were compared with 10 age-matched healthy women. Dyspnea intensity, inspiratory capacity, oxygen saturation, and cardiac, metabolic, and respiratory variables were assessed during exercise. Patients with LAM also performed a 6-minute walk test (6MWT). Measurements and Main Results: Patients with LAM had higher baseline dyspnea, poorer quality of life, obstructive pattern, air trapping, and reduced diffusing capacity of carbon monoxide in PFTs. Although they had the same level of regular physical activity, their maximal exercise performance was reduced and was associated with ventilatory limitation, greater desaturation, and dyspnea. The prevalence of DH was high in LAM (55%), even in patients with mild spirometric abnormalities, and was correlated with airflow obstruction, air trapping, and diffusing capacity of carbon monoxide. Compared with the non-DH subgroup, the patients who developed DH had a ventilatory limitation contributing to exercise cessation on cycling and higher desaturation and dyspnea intensity during the 6MWT. Conclusions: Ventilatory limitation and gas exchange impairment are important causes of exercise limitation in LAM. DH is frequent in LAM, even in patients with mild spirometric abnormalities. DH was associated with the severity of disease, higher dyspnea, and lower oxygen saturation. In the 6MWT, desaturation and dyspnea were greater in patients with DH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The potential influence of magnesium on exercise performance is a subject of increasing interest. Magnesium has been shown to have bronchodilatatory properties in asthma and chronic obstructive pulmonary disease patients. The aim of this study was to investigate the effects of acute magnesium IV loading on the aerobic exercise performance of stable chronic obstructive pulmonary disease patients. METHODS: Twenty male chronic obstructive pulmonary disease patients (66.2 +/- 8.3 years old, FEV1: 49.3 +/- 19.8%) received an IV infusion of 2 g of either magnesium sulfate or saline on two randomly assigned occasions approximately two days apart. Spirometry was performed both before and 45 minutes after the infusions. A symptom-limited incremental maximal cardiopulmonary test was performed on a cycle ergometer at approximately 100 minutes after the end of the infusion. ClinicalTrials.gov: NCT00500864 RESULTS: Magnesium infusion was associated with significant reductions in the functional residual capacity (-0.41 l) and residual volume (-0.47 l), the mean arterial blood pressure (-5.6 mmHg) and the cardiac double product (734.8 mmHg.bpm) at rest. Magnesium treatment led to significant increases in the maximal load reached (+8 w) and the respiratory exchange ratio (0.06) at peak exercise. The subgroup of patients who showed increases in the work load equal to or greater than 5 w also exhibited significantly greater improvements in inspiratory capacity (0.29 l). CONCLUSIONS: The acute IV loading of magnesium promotes a reduction in static lung hyperinflation and improves the exercise performance in stable chronic obstructive pulmonary disease patients. Improvements in respiratory mechanics appear to be responsible for the latter finding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to evaluate the effects of low-level laser therapy (LLLT) on exercise performance, oxidative stress, and muscle status in humans. A randomized double-blind placebo-controlled crossover trial was performed with 22 untrained male volunteers. LLLT (810 nm, 200 mW, 30 J in each site, 30 s of irradiation in each site) using a multi-diode cluster (with five spots - 6 J from each spot) at 12 sites of each lower limb (six in quadriceps, four in hamstrings, and two in gastrocnemius) was performed 5 min before a standardized progressive-intensity running protocol on a motor-drive treadmill until exhaustion. We analyzed exercise performance (VO(2 max), time to exhaustion, aerobic threshold and anaerobic threshold), levels of oxidative damage to lipids and proteins, the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and the markers of muscle damage creatine kinase (CK) and lactate dehydrogenase (LDH). Compared to placebo, active LLLT significantly increased exercise performance (VO(2 max) p = 0.01; time to exhaustion, p = 0.04) without changing the aerobic and anaerobic thresholds. LLLT also decreased post-exercise lipid (p = 0.0001) and protein (p = 0.0230) damages, as well as the activities of SOD (p = 0.0034), CK (p = 0.0001) and LDH (p = 0.0001) enzymes. LLLT application was not able to modulate CAT activity. The use of LLLT before progressive-intensity running exercise increases exercise performance, decreases exercise-induced oxidative stress and muscle damage, suggesting that the modulation of the redox system by LLLT could be related to the delay in skeletal muscle fatigue observed after the use of LLLT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O(2) fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O(2) uptake than S (72 +/- 1 and 62 +/- 2 ml x kg(-1) x min(-1), P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E (P < 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E (P < 0.05); however, S showed a larger fatigue index in both conditions (P < 0.05). Compared with normoxia, hypoxia lowered O(2) uptake by 16% in E and S (P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.