25 resultados para ERYTHROPOIETIC PROTOPORPHYRIA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Models for the study of hematopoietic stem cells in dogs provide important information for bone marrow transplantation in humans. Recent studies have reported the importance of human umbilical cord blood (UCB) as an alternative to allogenic bone marrow for hematopoietic reconstitution. However, there are no studies on the UCB cells of dogs. Objective: the aim of this experiment was to characterize and quantify the blood cells of the umbilical cord of dogs. Methods: the blood of the umbilical cord of 20 neonatal dogs, delivered at term, with a median gestation time of 58 days, was collected with a 5-mL syringe containing EDTA. Total RBC, WBC, and platelet counts, HCT, hemoglobin (Hgb) concentration, and RBC indices were determined using an automatic cell counter. The differential leukocyte count was determined manually in blood smears stained with May-Grunwald-Giemsa. Reticulocyte percentages were determined on blood smears stained with brilliant cresyl blue and counterstained with May-Grunwald Giemsa. Results: the MCHC and numbers of RBCs, WBCs, neutrophils, and eosinophils in UCB were lower as compared with reference values for the peripheral blood of healthy neonatal and adult dogs; whereas, the MCV and reticulocyte percentages were higher. Conclusion: Erythrocyte macrocytosis and hypochromasia in UCB were consistent with marked reticulocytosis and indicative of high erythropoietic activity. The results of this study are an important first step in the characterization of UCB from neonatal dogs.
Resumo:
Hemolytic anemia and vasoocclusion are the cardinal clinical features of sickle cell anemia. Vasoocclusion is a complex process involving not only the polymerization of deoxygenated sickle hemoglobin tetramers, but also interactions between sickle erythrocytes, vascular endothelium, platelets, leukocytes, and plasma proteins. The increased adherence of sickle erythrocytes to endothelium has been implicated as an early step in vasoocclusion. Other researchers have focused on leukocytes and platelets which might also contribute to disturbed blood flow. Microvascular occlusion results in acute painful crises, whereas macrovascular occlusion seems to be the cause of organ failure. The anemia results from the markedly shortened circulatory survival of sickle erythrocytes, together with a limited erythropoietic response. The erythropoiesis increases intensively, but it is not enough to balance the increased rate of erythrocytes destruction to maintain normal levels of total erythrocytes and hemoglobin concentrations; mainly by the low oxygen affinity of hemoglobin S and increased 2,3-Diphosphoglycerate. It is very difficult to separate processes leading to anemia or to vasoocclusion. Understanding the involvement of multiple blood componentes in vasoocclusion may elucidate the clinical manifestations and complications of sickle cell anemia, and may give new insights into the preventive and curative therapy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
[EN] Erythropoietin (Epo) has been suggested to affect plasma volume, and would thereby possess a mechanism apart from erythropoiesis to increase arterial oxygen content. This, and potential underlying mechanisms, were tested in eight healthy subjects receiving 5000 IU recombinant human Epo (rHuEpo) for 15 weeks at a dose frequency aimed to increase and maintain haematocrit at approximately 50%. Red blood cell volume was increased from 2933 +/- 402 ml before rHuEpo treatment to 3210 +/- 356 (P < 0.01), 3117 +/- 554 (P < 0.05), and 3172 +/- 561 ml (P < 0.01) after 5, 11 and 13 weeks, respectively. This was accompanied by a decrease in plasma volume from 3645 +/- 538 ml before rHuEpo treatment to 3267 +/- 333 (P < 0.01), 3119 +/- 499 (P < 0.05), and 3323 +/- 521 ml (P < 0.01) after 5, 11 and 13 weeks, respectively. Concomitantly, plasma renin activity and aldosterone concentration were reduced. This maintained blood volume relatively unchanged, with a slight transient decrease at week 11, such that blood volume was 6578 +/- 839 ml before rHuEpo treatment, and 6477 +/- 573 (NS), 6236 +/- 908 (P < 0.05), and 6495 +/- 935 ml (NS), after 5, 11 and 13 weeks of treatment. We conclude that Epo treatment in healthy humans induces an elevation in haemoglobin concentration by two mechanisms: (i) an increase in red cell volume; and (ii) a decrease in plasma volume, which is probably mediated by a downregulation of the rennin-angiotensin-aldosterone axis. Since the relative contribution of plasma volume changes to the increments in arterial oxygen content was between 37.9 and 53.9% during the study period, this mechanism seems as important for increasing arterial oxygen content as the well-known erythropoietic effect of Epo.
Resumo:
The level of body iron storage and the erythropoietic need for iron are indicated by the serum levels of ferritin and soluble transferrin receptor (sTfR), respectively. A meta-analysis of five genome-wide association studies on sTfR and ferritin revealed novel association to the PCSK7 and TMPRSS6 loci for sTfR and the HFE locus for both parameters. The PCSK7 association was the most significant (rs236918, P = 1.1 × 10E-27) suggesting that proprotein convertase 7, the gene product of PCSK7, may be involved in sTfR generation and/or iron homeostasis. Conditioning the sTfR analyses on transferrin saturation abolished the HFE signal and substantially diminished the TMPRSS6 signal while the PCSK7 association was unaffected, suggesting that the former may be mediated by transferrin saturation whereas the PCSK7-associated effect on sTfR generation appears to be more direct.
Resumo:
The management of anemia in patients with chronic renal failure has greatly improved with the availability of recombinant human erythropoietin in the late 1980s, leading to a considerable reduction in mortality and morbidity and to an improvement in quality of life. The findings from recent controlled clinical outcome trials have resulted in a rather narrow, generally accepted therapeutic hematocrit target range. However, currently available dosing algorithms do not permit achievement and maintenance of target values within the therapeutic range in many patients. One possible explanation for this failure may be the ignorance of a finite erythrocyte lifespan not integrated into most algorithms. The purpose of this article is to underline the essential role played by the erythrocyte lifespan in the erythropoietic response to recombinant human erythropoietin and to encourage the integration of this concept in the future development of computer-assisted decision support systems.