989 resultados para EQUATORIAL PACIFIC-OCEAN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The post-middle Miocene evolution of sedimentary patterns in the eastern equatorial Pacific Ocean has been deduced from a compilation and synthesis of CaCO3, opal, and nannofossil assemblage data from 11 sites drilled during Leg 138. Improvements in stratigraphic correlation and time scale development enabled the construction of lithostratigraphic and chronostratigraphic frameworks of exceptional quality. These frameworks, and the high sedimentation rates (often exceeding 4 cm/k.y.) provided a detailed and synoptic paleoceanographic view of a large and highly productive region. The three highlights that emerge are: (1) a middle late Miocene "carbonate crash" (Lyle et al., this volume); (2) a late Miocene-early Pliocene "biogenic bloom"; and (3) an early Pliocene "opal shift". During the carbonate crash, an interval of dissolution extending from -11.2 to 7.5 Ma, CaCO3 accumulation rates declined to near zero over much of the eastern equatorial Pacific, whereas opal accumulation rates remained substantially unchanged. The crash nadir, near 9.5 Ma, was marked by a brief shoaling of the regional carbonate compensation depth by more than 1400 m. The carbonate crash has been correlated over the entire tropical Pacific Ocean, and has been attributed to tectonically-induced changes in abyssal flow through the Panamanian seaway. The biogenic bloom extended from 6.7 to 4.5 Ma, and was characterized by an overall increase in biogenic accumulation and by a steepening of the latitudinal accumulation gradient toward the equator. The bloom has been observed over a large portion of the global ocean and has been linked to increased productivity. The final highlight, is a distinct and permanent shift in the locus of maximum opal mass accumulation rate at 4.4 Ma. This shift was temporally, and perhaps causally, linked to the final closure of the Panamanian seaway. Before 4.4 Ma, opal accumulation was greatest in the eastern equatorial Pacific Basin (near 0°N, 107°W). Since then, the highest opal fluxes in the equatorial Pacific have occurred in the Galapagos region (near 3°S, 92°W).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to quantify changes in export production and carbonate dissolution over the past 1 Myr in the central equatorial Pacific Ocean we analyzed Ba, P, Al Ti, and Ca in 1106 samples from five piston cores gathered from 5°S to 4°N at 140°W. We focused on Ba/Ti, Al/Ti, and P/Ti ratios as export proxies and employed areally integrated time slice as well as time series strategies. Carbonate maxima from 0-560 kyr are characterized by 15-30% greater export than carbonate minima. The increases in export fall on glacial delta18O transitions rather than glacial maxima. From 560-800 kyr, overlapping with the mid-Pleistocene transition, there is a very large increase in total export yet no glacial-interglacial variability. The highest latitudes (5°S and 4°N) record minimal absolute export change from glacials to interglacials and yet record the most extreme minima in percent CaCO3, indicating that carbonate records there are dominated by dissolution, whereas near the equator they are more influenced by changes in export.