44 resultados para EPSPS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The voltage-gated potassium channel subunit Kv3.1 confers fast firing characteristics to neurones. Kv3.1b subunit immunoreactivity (Kv3.1b-IR) was widespread throughout the medulla oblongata, with labelled neurones in the gracile, cuneate and spinal trigeminal nuclei. In the nucleus of the solitary tract (NTS), Kv3.1b-IR neurones were predominantly located close to the tractus solitarius (TS) and could be GABAergic or glutamatergic. Ultrastructurally, Kv3.1b-IR was detected in NTS terminals, some of which were vagal afferents. Whole-cell current-clamp recordings from neurones near the TS revealed electrophysiological characteristics consistent with the presence of Kv3.1b subunits: short duration action potentials (4.2 +/- 1.4 ms) and high firing frequencies (68.9 +/- 5.3 Hz), both sensitive to application of TEA (0.5 mm) and 4-aminopyridine (4-AP; 30 mum). Intracellular dialysis of an anti-Kv3.1b antibody mimicked and occluded the effects of TEA and 4-AP in NTS and dorsal column nuclei neurones, but not in dorsal vagal nucleus or cerebellar Purkinje cells (which express other Kv3 subunits, but not Kv3.1b). Voltage-clamp recordings from outside-out patches from NTS neurones revealed an outward K(+) current with the basic characteristics of that carried by Kv3 channels. In NTS neurones, electrical stimulation of the TS evoked EPSPs and IPSPs, and TEA and 4-AP increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. Synaptic inputs evoked by stimulation of a region lacking Kv3.1b-IR neurones were not affected, correlating the presence of Kv3.1b in the TS with the pharmacological effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the reaction between shikimate 3-phosphate and phosphoenolpyruvate to form 5-enolpyruvylshikimate 3-phosphate, an intermediate in the shikimate pathway, which leads to the biosynthesis of aromatic amino acids. EPSPS exists in an open conformation in the absence of substrates and/or inhibitors and in a closed conformation when bound to the substrate and/or inhibitor. In the present report, the H/D exchange properties of EPSPS from Mycobacterium tuberculosis (Mt) were investigated for both enzyme conformations using ESI mass spectrometry and circular dichroism (CD). When the conformational changes identified by H/D exchanges were mapped on the 3-D structure, it was observed that the apoenzyme underwent extensive conformational changes due to glyphosate complexation, characterized by an increase in the content of alpha-helices from 40% to 57%, while the beta-sheet content decreased from 30% to 23%. These results indicate that the enzyme underwent a series of rearrangements of its secondary structure that were accompanied by a large decrease in solvent access to many different regions of the protein. This was attributed to the compaction of 71% of alpha-helices and 57% of beta-sheets as a consequence of glyphosate binding to the enzyme. Apparently, MtEPSPS undergoes a series of inhibitor-induced conformational changes, which seem to have caused synergistic effects in preventing solvent access to the core of molecule, especially in the cleft region. This may be part of the mechanism of inhibition of the enzyme, which is required to prevent the hydration of the substrate binding site and also to induce the cleft closure to avoid entrance of the substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EPSP synthase (EPSPS) is an essential enzyme in the shikimate pathway, transferring the enolpyruvyl group of phosphoenolpyruvate to shikimate-3-phosphate to form 5-enolpyruvyl-3-shikimate phosphate and inorganic phosphate. This enzyme is composed of two domains, which are formed by three copies of βαβαββ-folding units; in between there are two crossover chain segments hinging the nearly topologically symmetrical domains together and allowing conformational changes necessary for substrate conversion. The reaction is ordered with shikimate-3-phosphate binding first, followed by phosphoenolpyruvate, and then by the subsequent release of phosphate and EPSP. N-[phosphomethyl]glycine (glyphosate) is the commercial inhibitor of this enzyme. Apparently, the binding of shikimate-3-phosphate is necessary for glyphosate binding, since it induces the closure of the two domains to form the active site in the interdomain cleft. However, it is somehow controversial whether binding of shikimate-3-phosphate alone is enough to induce the complete conversion to the closed state. The phosphoenolpyruvate binding site seems to be located mainly on the C-terminal domain, while the binding site of shikimate-3-phosphate is located primarily in the N-terminal domain residues. However, recent results demonstrate that the active site of the enzyme undergoes structural changes upon inhibitor binding on a scale that cannot be predicted by conventional computational methods. Studies of molecular docking based on the interaction of known EPSPS structures with (R)- phosphonate TI analogue reveal that more experimental data on the structure and dynamics of various EPSPS-ligand complexes are needed to more effectively apply structure-based drug design of this enzyme in the future. © 2007 Bentham Science Publishers Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Proteção de Plantas) - FCA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Far from being static transmission units, synapses are highly dynamical elements that change over multiple time scales depending on the history of the neural activity of both the pre- and postsynaptic neuron. Moreover, synaptic changes on different time scales interact: long-term plasticity (LTP) can modify the properties of short-term plasticity (STP) in the same synapse. Most existing theories of synaptic plasticity focus on only one of these time scales (either STP or LTP or late-LTP) and the theoretical principles underlying their interactions are thus largely unknown. Here we develop a normative model of synaptic plasticity that combines both STP and LTP and predicts specific patterns for their interactions. Recently, it has been proposed that STP arranges for the local postsynaptic membrane potential at a synapse to behave as an optimal estimator of the presynaptic membrane potential based on the incoming spikes. Here we generalize this approach by considering an optimal estimator of a non-linear function of the membrane potential and the long-term synaptic efficacy—which itself may be subject to change on a slower time scale. We find that an increase in the long-term synaptic efficacy necessitates changes in the dynamics of STP. More precisely, for a realistic non-linear function to be estimated, our model predicts that after the induction of LTP, causing long-term synaptic efficacy to increase, a depressing synapse should become even more depressing. That is, in a protocol using trains of presynaptic stimuli, as the initial EPSP becomes stronger due to LTP, subsequent EPSPs should become weakened and this weakening should be more pronounced with LTP. This form of redistribution of synaptic efficacies agrees well with electrophysiological data on synapses connecting layer 5 pyramidal neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During wakefulness and sleep, neurons in the neocortex emit action potentials tonically or in rhythmic bursts, respectively. However, the role of synchronized discharge patterns is largely unknown. We have recently shown that pairings of excitatory postsynaptic potentials (EPSPs) and action potential bursts or single spikes lead to long-term depression (burst-LTD) or long-term potentiation, respectively. In this study, we elucidate the cellular mechanisms of burst-LTD and characterize its functional properties. Whole-cell patch-clamp recordings were obtained from layer V pyramidal cells in somatosensory cortex of juvenile rats in vitro and composite EPSPs and EPSCs were evoked extracellularly in layers II/III. Repetitive burst-pairings led to a long-lasting depression of EPSPs and EPSCs that was blocked by inhibitors of metabotropic glutamate group 1 receptors, phospholipase C, protein kinase C (PKC) and calcium release from the endoplasmic reticulum, and that required an intact machinery for endocytosis. Thus, burst-LTD is induced via a Ca2+- and phosphatidylinositol-dependent activation of PKC and expressed through phosphorylation-triggered endocytosis of AMPA receptors. Functionally, burst-LTD is inversely related to EPSP size and bursts dominate single spikes in determining the sign of synaptic plasticity. Thus burst-firing constitutes a signal by which coincident synaptic inputs are proportionally downsized. Overall, our data thus suggest a mechanism by which synaptic weights can be reconfigured during non-rapid eye movement sleep.