951 resultados para ENTANGLEMENT MANIPULATION
Resumo:
We study the transformation of maximally entangled states under the action of Lorentz transformations in a fully relativistic setting. By explicit calculation of the Wigner rotation, we describe the relativistic analog of the Bell states as viewed from two inertial frames moving with constant velocity with respect to each other. Though the finite dimensional matrices describing the Lorentz transformations are non-unitary, each single particle state of the entangled pair undergoes an effective, momentum dependent, local unitary rotation, thereby preserving the entanglement fidelity of the bipartite state. The details of how these unitary transformations are manifested are explicitly worked out for the Bell states comprised of massive spin 1/2 particles and massless photon polarizations. The relevance of this work to non-inertial frames is briefly discussed.
Resumo:
We discuss quantum error correction for errors that occur at random times as described by, a conditional Poisson process. We shoo, how a class of such errors, detected spontaneous emission, can be corrected by continuous closed loop, feedback.
Resumo:
Variation in larval size has been shown to be an important factor for the post-metamorphic performance of marine invertebrates but, despite its importance, few sources of this variation have been identified. For a range of taxa, offspring size is positively correlated with maternal size but the reasons for this correlation remain unclear. We halved the size of colonies in the bryozoan Bugula neritina 1 wk prior to reproduction (but during embryogenesis) to determine if larval size is a fixed or plastic trait. We manipulated colonies in such a way that the ratio of feeding zooids to reproductive zooids was constant between treatment and control colonies. We found that manipulating colony size strongly affects larval size; halved colonies produced larvae that were similar to13% smaller than those produced by intact colonies. We entered these data into a simple model based on previous work to estimate the likely post-metamorphic consequences of this reduction in larval size. The model predicted that larvae that came from manipulated colonies would suffer similar to300% higher post-metamorphic mortality and similar to50% lower fecundity as adults. Colonies that are faced with a stress appear to be trading off current offspring fitness to maximize their own long-term fitness and this may explain previous observations of compensatory growth in colonial organisms. This study demonstrates that larval size is a surprisingly dynamic trait and strong links exist between the maternal phenotype and the fitness of the offspring. The performance of settling larvae may be determined not only by their larval experience but also by the experience of their mothers.
Resumo:
The concept of local concurrence is used to quantify the entanglement between a single qubit and the remainder of a multiqubit system. For the ground state of the BCS model in the thermodynamic limit the set of local concurrences completely describes the entanglement. As a measure for the entanglement of the full system we investigate the average local concurrence (ALC). We find that the ALC satisfies a simple relation with the order parameter. We then show that for finite systems with a fixed particle number, a relation between the ALC and the condensation energy exposes a threshold coupling. Below the threshold, entanglement measures besides the ALC are significant.
Resumo:
Entrapment of guidewires by inferior vena cava filters can occur during the blind insertion of a jugular or a subclavian central venous catheter. Recently, few case reports have been published in the radiology literature. In addition, others have described endovascular techniques aimed at removing entrapped guidewires, avoiding the possibility of vena cava rupture. Given that a temporary hemodialysis venous catheter is frequently used as a first access, the possibility of entrapping the dialysis catheter guidewire should not be neglected.
Resumo:
The concept of entanglement in systems where the particles are indistinguishable has been the subject of much recent interest and controversy. In this paper we study the notion of entanglement of particles introduced by Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific physical systems, including some that occur in condensed-matter physics. The entanglement of particles is relevant when the identical particles are itinerant and so not distinguished by their position as in spin models. We show that entanglement of particles can behave differently than other approaches that have been used previously, such as entanglement of modes (occupation-number entanglement) and the entanglement in the two-spin reduced density matrix. We argue that the entanglement of particles is what could actually be measured in most experimental scenarios and thus its physical significance is clear. This suggests that entanglement of particles may be useful in connecting theoretical and experimental studies of entanglement in condensed-matter systems.
Resumo:
The biomechanics of the sacroiliac joint makes the pelvic segment responsible for proper weight distribution between lower extremities; however, it is known to be susceptible to altered mobility. The objective of this study was to analyze baropodometric responses following thrust manipulation on subjects with sacroiliac joint restrictions. Twenty asymptomatic subjects were submitted to computerized baropodometric analysis before, after, and seven days following sacroiliac manipulation. The variables peak pressure and contact area were obtained at each of these periods as the average of absolute values of the difference between the right and left foot based on three trials. Data revealed significant reduction only in peak pressure immediately after manipulation and at follow-up when compared to pre-manipulative values (p < 0.05). Strong correlation was found between the dominant foot and the foot with greater contact area (r - 0.978), as well as between the side of joint restriction and the foot with greater contact area (r = 0.884). Weak correlation was observed between the dominant foot and the foot with greater peak pressure (r = 0.501), as well as between the side of joint restriction and the foot with greater peak pressure (r = 0.694). The results suggest that sacroiliac joint manipulation can influence peak pressure distribution between feet, but contact area does not seem to be related to the biomechanical aspects addressed in this study. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee`s ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.
Resumo:
Background: Mice allergic to ovalbumin (OVA) avoid drinking a solution containing this antigen. This was interpreted as related to IgE-dependent mast cell degranulation and sensory C fiber activation. Methods: We employed pharmacological manipulation to further investigate the mediators involved in immune-induced food aversion. Results: While nonimmunized rats preferred a sweetened OVA solution, immunized rats avoided it. We also employed a paradigm in which rats are conditioned to drink water for two 10-min sessions a day. Tolerant rats presented lower IgE titers, and this manipulation abrogated food aversion. Dexamethasone (1.0 mg/kg) prevented the aversion of OVA-immunized rats to the antigen-containing solution. Combined blockade of H(1) and 5-hydroxytryptamine (5-HT)(2) receptors by promethazine (3.0 mg/kg) plus methysergide (5.0 mg/kg) was unable to alter food aversion. Blockade of 5-HT(3) receptors by ondansetron (1.0 mg/kg) caused a twofold increase in the ingestion of the sweetened OVA solution by immunized rats, suggesting the involvement of 5-HT(3) receptors in food aversion. Finally, we showed that dexamethasone or promethazine plus methysergide, but not ondansetron, effectively prevented the IgE-dependent mast-cell-degranulation-induced increase in vascular permeability in rats. Conclusion: We suggest that regardless of whether or not they cause edema, IgE-mediated mast cell degranulation and consequent 5-HT(3) signaling are involved in the process that triggers avoidance to the source of the allergen in allergic rats. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
A concept of polarization entanglement for continuous variables is introduced. For this purpose the Stokes-parameter operators and the associated Poincare sphere, which describe the quantum-optical polarization properties of light, are defined and their basic properties are reviewed. The general features of the Stokes operators are illustrated by evaluation of their means and variances for a range of simple polarization states. Some of the examples show polarization squeezing, in which the variances of one or more Stokes parameters are smaller than the coherent-state value. The main object of the paper is the application of these concepts to bright squeezed light. It is shown that a light beam formed by interference of two orthogonally polarized quadrature-squeezed beams exhibits squeezing in some of the Stokes parameters. Passage of such a primary polarization-squeezed beam through suitable optical components generates a pair of polarization-entangled light beams with the nature of a two-mode squeezed state. Implementation of these schemes using the double-fiber Sagnac interferometer provides an efficient method for the generation of bright nonclassical polarization states. The important advantage of these nonclassical polarization states for quantum communication is the possibility of experimentally determining all of the relevant conjugate variables of both squeezed and entangled fields using only linear optical elements followed by direct detection.
Resumo:
Contributors to the debate surrounding the ethics of germ line gene manipulation have by and large concentrated their efforts on discussions of the potential risks that are associated with the use of this technology. Many international advisory committees have ruled out the acceptability of germ line gene manipulation at least for the time being. The purpose of this work is to generate much needed discussion on the many other ethical issues concerning the implementation of not only germ line gene manipulation but also other related biotechnologies. In this paper I systematically investigate and analyse the most salient issues put forward by proponents and opponents alike. I argue that if germ line manipulation proves to be a safe and effective procedure, then the principle of beneficence imposes on the medical profession a moral duty to pursue the technology.
Resumo:
We present some applications of high-efficiency quantum interrogation (interaction-free measurement) for the creation of entangled states of separate atoms and of separate photons. The quantum interrogation of a quantum object in a superposition of object-in and object-out leaves the object and probe in an entangled state. The probe can then be further entangled with other objects in subsequent quantum interrogations. By then projecting out those cases in which the probe is left in a particular final state, the quantum objects can themselves be left in various entangled states. In this way, we show how to generate two-, three-, and higher-qubit entanglement between atoms and between photons. The effect of finite efficiency for the quantum interrogation is delineated for the various schemes.