892 resultados para ELECTRON LOCALIZATION
Resumo:
The potential energy surfaces at the singlet (s) and the triplet (t) electronic states associated with the gas-phase ion/molecule reactions of NbO3-, NbO5-, and NbO2(OH)(2)(-) with H2O and O-2 have been investigated by means of DFT calculations at the B3LYP level. An analysis of the results points out that the most favorable reactive channel comprises s-NbO3- reacting with H2O to give an ion-molecule complex s-NbO3(H2O)without a barrier. From this minima, an intramolecular hydrogen transfer takes place between the incoming water molecule and an oxygen atom of the NbO3- fragment to render the most stable minimum, s-NbO2(OH)(2)(-). This oxyhydroxide system reacts with O-2 along a barrierless process to obtain the triplet t-NbO4(OH)(2)(-)-A intermediate, and the crossing point, CP1, between s and t electronic states has been characterized. The next step is the hydrogen-transfer process between the oxygen atom of a hydroxyl group and the one adjacent oxygen atom to render a minimum with the two OH groups near each other, t-NbO4(OH)(2)(-)-B. From this point, the last hydrogen migration takes place, to obtain the product complex, t-NbO5(H2O)(-), that can be connected with the singlet separated products, s-NbO5- and H2O. Therefore, a second crossing point, CP2, has been localized. The nature of the chemical bonding of the key minima (NbO3-, NbO2(OH)(2)(-), NbO4(OH)(2)(-)-B, and NbO5-) in both electronic states of the reaction and an interaction with O-2 has been studied by topological analysis of Becke-Edgecombe electron-localization function (ELF) and atoms-in-molecules (AIM) methodology. The niobium-oxygen interactions are characterized as unshared-electron (ionic) interactions and some oxygen-oxygen interactions as protocovalent bonds.
Resumo:
Geometric, thermodynamic and electronic properties of cluster neutrals NbxOy and cations NbxOy+ (x = 1-3; y = 2-5, 7, 8) have been characterized theoretically. A DFT calculation using a hybrid combination of B3LYP with contracted Huzinaga basis sets. Numerical results of the relative stabilities, ionization potentials and band gaps of different clusters are in agreement with experiment. Analysis of dissociation channels supports the more stable building blocks as formed by NbO2, NbO2+ NbO3 and NbO3+ stoichiometries. The net atomic charges suggest that oxygen donor molecules can interact more favorably on central niobium atoms of cluster cations, while the interaction with oxygen acceptor molecules is more favorable on the terminal oxygen atoms of neutral clusters. A topological analysis of the electron localization function gradient field indicates that the clusters may be described as having a strong ionic interaction between Nb and O atoms. Published by Elsevier B.V. B.V.
Resumo:
Physical and chemical adsorption of CO 2 on ZnO surfaces were studied by means of two different implementations of periodic density functional theory. Adsorption energies were computed and compared to values in the literature. In particular, it was found that the calculated equilibrium structure and internuclear distances are in agreement with previous work. CO 2 adsorption was analyzed by inspection of the density of states and electron localization function. Valence bands, band gap and final states of adsorbed CO 2 were investigated and the effect of atomic displacements analyzed. The partial density of states (PDOS) of chemical adsorption of CO 2 on the ZnO(0001) surface show that the p orbitals of CO 2 were mixed with the ZnO valence band state appearing at the top of the valence band and in regions of low-energy conduction band. [Figure not available: see fulltext.] © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Charge-ordering phenomena have been highly topical over the past few years. A phase transition towards a charge-ordered state has been observed experimentally in several classes of materials. Among them, many studies have been devoted to the family of quasi-one-dimensional organic charge-transfer salts (TMTTF)2X, where (TMTTF) stands for tetramethyltetrathiafulvalene and X for a monovalent anion (X = PF6, AsF6 and SbF6). However, the relationship between the electron localization phenomena and the role of the lattice distortion in stabilizing the charge-ordering pattern is poorly documented in the literature. Here we present a brief overview of selected literature results, with emphasis placed on recent thermal expansion experiments probing the charge-ordering transition of these salts. © 2013 IOP Publishing Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The interaction of formamide and the two transition states of its amide group rotation with one, two, or three water molecules was studied in vacuum. Great differences between the electronic structure of formamide in its most stable form and the electronic structure of the transition states were noticed. Intermolecular interactions were intense, especially in the cases where the solvent interacted with the amide and the carbonyl groups simultaneously. In the transition states, the interaction between the lone pair of nitrogen and the water molecule becomes important. With the aid of the natural bond orbitals, natural resonance theory, and electron localization function (ELF) analyses an increase in the resonance of planar formamide with the addition of successive water molecules was observed. Such observation suggests that the hydrogen bonds in the formamidewater complexes may have some covalent character. These results are also supported by the quantitative ELF analyses. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
Herein, we report results of calculations based on density functional theory (BP86/TZVP) of a set of isatin-Schiff base copper(II) and related complexes, 1-12, that have shown significant pro-apoptotic activity toward diverse tumor cells. The interaction of the copper(II) cation with different ligands has been investigated at the same level of theory. The strength and character of the Cu(II)-L bonding was characterized by metal-ligand bond lengths, vibrational frequencies, binding energies, ligand deformation energies, and natural population analysis. The metal-ligand bonding situation was also characterized by using two complementary topological approaches, the quantum theory of atoms-in-molecules (QTAIM) and the electron localization function (ELF). The calculated electronic g-tensor and hyperfine coupling constants present significant agreement with the EPR experimental data. The calculated parameters pointed to complex 10 as the most stable among the isatin-Schiff base copper(II) species, in good agreement with experimental data that indicate this complex as the most reactive in the series. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
The intermetallic compounds ScPdZn and ScPtZn were prepared from the elements by high-frequency melting in sealed tantalum ampoules. Both structures were refined from single crystal X-ray diffractometer data: YAlGe type, Cmcm, a = 429.53(8), b = 907.7(1), c = 527.86(1) pm, wR2 = 0.0375, 231 F2 values, for ScPdZn and a = 425.3(1), b = 918.4(2), c = 523.3(1) pm, wR2 = 0.0399, 213 F2 values for ScPtZn with 14 variables per refinement. The structures are orthorhombically distorted variants of the AlB2 type. The scandium and palladium (platinum atoms) build up ordered networks Sc3Pd3 and Sc3Pt3 (boron networks) which are slightly shifted with respect to each other. These networks are penetrated by chains of zinc atoms (262 pm in ScPtZn) which correspond to the aluminum positions, i.e. Zn(ScPd) and Zn(ScPt). The corresponding group-subgroup scheme and the differences in chemical bonding with respect to other AlB2-derived REPdZn and REPtZn compounds are discussed. 45Sc solid state NMR spectra confirm the single crystallographic scandium sites. From electronic band structure calculations the two compounds are found metallic with free electron like behavior at the Fermi level. A larger cohesive energy for ScPtZn suggests a more strongly bonded intermetallic than ScPdZn. Electron localization and overlap population analyses identify the largest bonding for scandium with the transition metal (Pd, Pt).
Resumo:
We numerically investigate the effects of inhomogeneities in the energy spectrum of aperiodic semiconductor superlattices, focusing our attention on Thue-Morse and Fibonacci sequences. In the absence of disorder, the corresponding electronic spectra are self-similar. The presence of a certain degree of randomness, due to imperfections occurring during the growth processes, gives rise to a progressive loss of quantum coherence, smearing out the finer details of the energy spectra predicted for perfect aperiodic superlattices and spurring the onset of electron localization. However, depending on the degree of disorder introduced, a critical size for the system exists, below which peculiar transport properties, related to the pre-fractal nature of the energy spectrum, may be measured.
Resumo:
The etiological agent of maize white spot (MWS) disease has been a subject of controversy and discussion. Initially the disease was described as Phaeosphaeria leaf spot caused by Phaeosphaeria maydis. Other authors have Suggested the existence of different fungal species causing similar symptoms. Recently, a bacterium, Pantoea ananatis, was described as the causal agent of this disease. The purpose of this Study was to offer additional information on the correct etiology of this disease by providing visual evidence of the presence of the bacterium in the interior of the MWS lesions by using transmission electron microscopy (TEM) and molecular techniques. The TEM allowed Visualization of a large amount of bacteria in the intercellular spaces of lesions collected from both artificially and naturally infected plants. Fungal structures were not visualized in young lesions. Bacterial primers for the 16S rRNA and rpoB genes were used in PCR reactions to amplify DNA extracted from water-soaked (young) and necrotic lesions. The universal fungal oligonucleotide ITS4 was also included to identity the possible presence of fungal structures inside lesions. Positive PCR products from water-soaked lesions, both from naturally and artificially inoculated plants, were produced with bacterial primers, whereas no amplification was observed when ITS4 oligonucleotide was used. On the other hand, DNA amplification with ITS4 primer was observed when DNA was isolated from necrotic (old) lesions. These results reinforced previous report of P. ananatis as the primary pathogen and the hypothesis that fungal species may colonize lesions pre-established by P. ananatis.
Resumo:
Endophytes are microorganisms that colonize plant tissues internally without causing harm to the host. Despite the increasing number of studies on sweet orange pathogens and endophytes, yeast has not been described as a sweet orange endophyte. In the present study, endophytic yeasts were isolated from sweet orange plants and identified by sequencing of internal transcribed spacer (ITS) rRNA. Plants sampled from four different sites in the state of Sao Paulo, Brazil exhibited different levels of CVC (citrus variegated chlorosis) development. Three citrus endophytic yeasts (CEYs), chosen as representative examples of the isolates observed, were identified as Rhodotorula mucilaginosa, Pichia guilliermondii and Cryptococcus flavescens. These strains were inoculated into axenic Citrus sinensis seedlings. After 45 days, endophytes were reisolated in populations ranging from 10(6) to 10(9) CFU/g of plant tissue, but, in spite of the high concentrations of yeast cells, no disease symptoms were observed. Colonized plant material was examined by scanning electron microscopy (SEM), and yeast cells were found mainly in the stomata and xylem of plants, reinforcing their endophytic nature. P. guilliermondii was isolated primarily from plants colonized by the causal agent of CVC, Xylella fastidiosa. The supernatant from a culture of P. guilliermondii increased the in vitro growth of X. fastidiosa, suggesting that the yeast could assist in the establishment of this pathogen in its host plant and, therefore, contribute to the development of disease symptoms.
Resumo:
Following a former immunohistochemical study in the rat brain [Arluison, M., Quignon, M., Nguyen, P., Thorens, B., Leloup, C., Penicaud, L. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. I. Immunohistochemical study. J. Chem. Neuroanat., in press], we have analyzed the ultrastructural localization of GLUT2 in representative and/or critical areas of the forebrain and hindbrain. In agreement with previous results, we observe few oligodendrocyte and astrocyte cell bodies discretely labeled for GLUT2 in large myelinated fibre bundles and most brain areas examined, whereas the reactive glial processes are more numerous and often localized in the vicinity of nerve terminals and/or dendrites or dendritic spines forming synaptic contacts. Only some of them appear closely bound to unlabeled nerve cell bodies and dendrites. Furthermore, the nerve cell bodies prominently immunostained for GLUT2 are scarce in the brain nuclei examined, whereas the labeled dendrites and dendritic spines are relatively numerous and frequently engaged in synaptic junctions. In conformity with the observation of GLUT2-immunoreactive rings at the periphery of numerous nerve cell bodies in various brain areas (see previous paper), we report here that some neuronal perikarya of the dorsal endopiriform nucleus/perirhinal cortex exhibit some patches of immunostaining just below the plasma membrane. However, the presence of many GLUT2-immunoreactive nerve terminals and/or astrocyte processes, some of them being occasionally attached to nerve cell bodies and dendrites, could also explain the pericellular labeling observed. The results here reported support the idea that GLUT2 may be expressed by some cerebral neurones possibly involved in glucose sensing, as previously discussed. However, it is also possible that this transporter participate in the regulation of neurotransmitter release and, perhaps, in the release of glucose by glial cells.
Resumo:
Cell-CAM 105 has been identified as a cell adhesion molecule (CAM) based on the ability of monospecific and monovalent anti-cell-CAM 105 antibodies to inhibit the reaggregation of rat hepatocytes. Although one would expect to find CAMs concentrated in the lateral membrane domain where adhesive interactions predominate, immunofluorescence analysis of rat liver frozen sections revealed that cell-CAM 105 was present exclusively in the bile canalicular (BC) domain of the hepatocyte. To more precisely define the in situ localization of cell-CAM 105, immunoperoxidase and electron microscopy were used to analyze intact and mechanically dissociated fixed liver tissue. Results indicate that although cell-CAM 105 is apparently restricted to the BC domain in situ, it can be detected in the pericanalicular region of the lateral membranes when accessibility to lateral membranes is provided by mechanical dissociation. In contrast, when hepatocytes were labeled following incubation in vitro under conditions used during adhesion assays, cell-CAM 105 had redistributed to all areas of the plasma membrane. Immunofluorescence analysis of primary hepatocyte cultures revealed that cell-CAM 105 and two other BC proteins were localized in discrete domains reminscent of BC while cell-CAM 105 was also present in regions of intercellular contact. These results indicate that the distribution of cell-CAM 105 under the experimental conditions used for cell adhesion assays differs from that in situ and raises the possibility that its adhesive function may be modulated by its cell surface distribution. The implications of these and other findings are discussed with regard to a model for BC formation.^ Analysis of molecular events involved in BC formation would be accelerated if an in vitro model system were available. Although BC formation in culture has previously been observed, repolarization of cell-CAM 105 and two other domain-specific membrane proteins was incomplete. Since DMSO had been used by Isom et al. to maintain liver-specific gene expression in vitro, the effect of this differentiation system on the polarity of these membrane proteins was examined. Based on findings presented here, DMSO apparently prolongs the expression and facilitates polarization of hepatocyte membrane proteins in vitro. ^
Resumo:
We report a comprehensive study of weak-localization and electron-electron interaction effects in a GaAs/InGaAs two-dimensional electron system with nearby InAs quantum dots, using measurements of the electrical conductivity with and without magnetic field. Although both the effects introduce temperature dependent corrections to the zero magnetic field conductivity at low temperatures, the magnetic field dependence of conductivity is dominated by the weak-localization correction. We observed that the electron dephasing scattering rate tau(-1)(phi), obtained from the magnetoconductivity data, is enhanced by introducing quantum dots in the structure, as expected, and obeys a linear dependence on the temperature and elastic mean free path, which is against the Fermi-liquid model. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2996034]