1000 resultados para ELECTROCHEMICAL CODEPOSITION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a simple electrochemical route to produce uniformly sized gold nanospikes without the need for a capping agent or prior modification of the electrode surface, which are predominantly oriented in the {111} crystal plane and exhibit promising electrocatalytic and SERS properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ atomic force microscopy (AFM) allows images from the upper face and sides of TCNQ crystals to be monitored during the course of the electrochemical solid–solid state conversion of 50 × 50 μm2 three-dimensional drop cast crystals of TCNQ to CuTCNQ or M[TCNQ]2(H2O)2 (M = Co, Ni). Ex situ images obtained by scanning electron microscopy (SEM) also allow the bottom face of the TCNQ crystals, in contact with the indium tin oxide or gold electrode surface and aqueous metal electrolyte solution, to be examined. Results show that by carefully controlling the reaction conditions, nearly mono-dispersed, rod-like phase I CuTCNQ or M[TCNQ]2(H2O)2 can be achieved on all faces. However, CuTCNQ has two different phases, and the transformation of rod-like phase 1 to rhombic-like phase 2 achieved under conditions of cyclic voltammetry was monitored in situ by AFM. The similarity of in situ AFM results with ex situ SEM studies accomplished previously implies that the morphology of the samples remains unchanged when the solvent environment is removed. In the process of crystal transformation, the triple phase solid∣electrode∣electrolyte junction is confirmed to be the initial nucleation site. Raman spectra and AFM images suggest that 100% interconversion is not always achieved, even after extended electrolysis of large 50 × 50 μm2 TCNQ crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galvanic replacement represents a highly significant process for the fabrication of bimetallic materials, but to date its application has been limited to either modification of large area metal surfaces or nanoparticles in solution. Here, the localised surface modification of copper and silver substrates with gold through the galvanic replacement process is reported. This was achieved by generation of a localised flux of AuCl4− ions from a gold ultramicroelectrode tip which interacts with the unbiased substrate of interest. The extent of modification with gold can be controlled through the tip–substrate distance and electrolysis time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The galvanic replacement reaction has received considerable interest due to the creation of novel bimetallic nanomaterials that minimise the use of expensive metals while maintaining enhanced electrocatalytic properties for certain reactions. In this work we investigate the galvanic replacement of electrochemically synthesised iron nanocubes on glassy carbon, with gold and palladium. The resultant nanomaterials demonstrate quite a difference in morphology; the original cuboid like template is maintained in the case of gold but destroyed when palladium is used. The electrochemical and electrocatalytic behaviours of these materials are reported for reactions such as methanol oxidation, hydrogen evolution and oxygen reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of electrodeposited metal-based nanostructures for electroanalytical applications has recently received widespread attention. There are several approaches to creating nanostructured materials through electrochemical routes that include facile electrodeposition at either untreated or modified electrodes, or through the use of physical or chemical templating methods. This allows the shape, size and composition of the nanomaterial to be readily tuned for the application of interest. The use of such materials is particularly suited to electroanalytical applications. In this mini-review an overview of recently developed nanostructured materials developed through electrochemical routes is presented as well as their electroanalytical applications in areas of biological and environmental importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nanostructured gold surface consisting of closely packed outwardly growing spikes is investigated for the electrochemical detection of dopamine and cytochrome c. A significant electrocatalytic effect for the electrooxidation of both dopamine and ascorbic acid at the nanostructured electrode was found due to the presence of surface active sites which allowed the detection of dopamine in the presence of excess ascorbic acid to be achieved by differential pulse voltammetry. By simple modification with a layer of Nafion, the enhanced electrocatalytic properties of the nanostructured surface was maintained while increasing the selectivity of dopamine detection in the presence of interfering species such as excess ascorbic and uric acids. Also, upon modification of the nanostructured surface with a monolayer of cysteine, the electrochemical response of immobilised cytochrome c in two distinct conformations was observed. This opens up the possibility of using such a nanostructured surface for the characterisation of other biomolecules and in bio-electroanalytical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a simple approach to the creation of highly dispersed electrocatalytically active silver microstructured dendrites on indium tin oxide in the absence of any surface modification or surfactant is presented. It is found that the addition of low concentrations of supporting electrolyte to the AgNO3 solution dramatically influences the morphology of electrodeposited silver which is independent of both the anion and the cation employed. The silver dendrites are characterized by SEM, XRD, XPS as well as by cyclic voltammetry under alkaline conditions. It is found that the surface oxide formation and removal processes are significantly influenced by the microstructured morphology of the silver electrodeposits compared to a smooth macrosized silver electrode. The facile formation of dendritic silver microstructures is also shown to be beneficial for the electrocatalytic oxidation of both formaldehyde and hydrazine and oxygen reduction. The formation of a continuous film of dendritic silver is also investigated for its SERS activity where the connectivity between the individual dendrites is found to be particularly important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM), in the substrate generation–tip collection (SG-TC) mode, has been used to detect the cuprous ion intermediate formed during the course of electrodeposition of Cu metal from aqueous solution. Addition of chloride is confirmed to strongly stabilize the ion in aqueous solution and enhance the rate of Cu electrodeposition. This SECM method in the SG-TC mode offers an alternative to the rotating ring disk electrode (RRDE) technique for in situ studies on the effect of plating bath additives in metal electrodeposition. An attractive feature of the SECM relative to the RRDE method is that it allows qualitative aspects of the electrodeposition process to be studied in close proximity to the substrate in a simple and direct fashion using an inexpensive probe, and without the need for forced convection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of 7,7,8,8-tetracyanoquinodimethane (TCNQ) crystals attached to a glassy carbon electrode in the presence of Cu2+(aq) to form CuTCNQ(s) has been investigated using scanning electrochemical microscopy in the substrate generation tip collection mode and shown to involve a generation of soluble TCNQ−(aq). The subsequent oxidation of CuTCNQ does not involve simple expulsion of Cu+ into solution but a soluble complex attributed to Cu2+TCNQ−(aq). Mechanistic insights relative to the electrochemical conversion of CuTCNQ phase I into phase II by repetitive cycling of potential and electrochemical formation of KTCNQ have also been established

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical formation of highly porous CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) and CuTCNQF4 (TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) materials was undertaken via the spontaneous redox reaction between a porous copper template, created using a hydrogen bubbling template technique, and an acetonitrile solution containing TCNQ or TCNQF4. It was found that activation of the surface via vigorous hydrogen evolution that occurs during porous copper deposition and TCNQ mass transport being hindered through the porous network of the copper template influenced the growth of CuTCNQ and CuTCNQF4. This approach resulted in the fabrication of a honeycomb layered type structure where the internal walls consist of very fine crystalline needles or spikes. This combination of microscopic and nanoscopic roughness was found to be extremely beneficial for anti-wetting properties where superhydrophobic materials with contact angles as high as 177° were created. Given that CuTCNQ and CuTCNQF4 have shown potential as molecular based electronic materials in the area of switching and field emission, the creation of a surface that is moisture resistant may be of applied interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of storage time on the cyclability of lithium electrodes in an ionic liquid electrolyte, namely 0.5 m LiBF4 in N-methyl-N-propyl pyrrolidinium bis(fluorosulfonyl)imide, [C3mpyr+][FSI–], was investigated. A chemical interaction was observed which is time dependent and results in a morphology change of the Li surface due to build up of passivation products over a 12-day period. The formation of this layer significantly impacts on the Li electrode resistance before cycling and the charging/discharging process for symmetrical Li|0.5 m LiBF4 in [C3mpyr+][FSI–]|Li coin cells. Indeed it was found that introducing a rest period between cycling, and thereby allowing the chemical interaction between the Li electrode and electrolyte to take place, also impacted on the charging/discharging process. For all Li surface treatments the electrode resistance decreased after cycling and was due to significant structural rearrangement of the surface layer. These results suggest that careful electrode pretreatment in a real battery system will be required before operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lower carat gold alloys, specifically 9 carat gold alloys, containing less than 40 % gold, and alloying additions of silver, copper and zinc, are commonly used in many jewellery applications, to offset high costs and poor mechanical properties associated with pure gold. While gold is considered to be chemically inert, the presence of active alloying additions raises concerns about certain forms of corrosion, particularly selective dissolution of these alloys. The purpose of this study was to systematically study the corrosion behaviour of a series of quaternary gold–silver–copper–zinc alloys using dc potentiodynamic scanning in saline (3.5 % NaCl) environment. Full anodic/cathodic scans were conducted to determine the overall corrosion characteristics of the alloy, followed by selective anodic scans and subsequent morphological and compositional analysis of the alloy surface and corroding media to determine the extent of selective dissolution. Varying degrees of selective dissolution and associated corrosion rates were observed after anodic polarisation in 3.5 % NaCl, depending on the alloy composition. The corrosion behaviour of the alloys was determined by the extent of anodic reactions which induce (1) formation of oxide scales on the alloy surface and or (2) dissolution of Zn and Cu species. In general, the improved corrosion characteristics of alloy #3 was attributed to the composition of Zn/Cu in the alloy and thus favourable microstructure promoting the formation of protective oxide/chloride scales and reducing the extent of Cu and Zn dissolution.