994 resultados para ELECTROCATALYTIC PROPERTIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compact blue conducting mixed-valence Mo (VI,V) oxide film was grown on the surface of a carbon fibre (CF) microelectrode by cycling the potential between +0.20 and similar to 0.70 V SCE in freshly prepared Na2MoO4 solution in H2SO4 (pH 2). The thicknes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical and electrocatalytic properties of iron(III)-substituted Dawson-type tungstophosphate anion are described. The anion exhibits a one-electron couple associated with the Fe(III) center and two two-electron waves attributed to redox proce

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrodeposition from a lyotropic liquid crystal template medium was used to produce nanostructured platinum microelectrodes with high specific surface area and high mass transport efficiency. Compared to polished and conventional platinized microelectrodes, well-ordered nanostructured platinum microelectrodes exhibited enhanced electrocatalytic properties for oxygen and ascorbic acid, whilst well-ordered nanostructured platinum microelectrodes offered improved electrocatalytic properties for oxygen reduction compared to disordered nanostructured platinum microelectrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we report the derivatization of mesoporous TiO(2) thin films for the preparation of H(2)O(2) amperometric sensors. The coordination of the bifunctional ligand 1,10 phenantroline, 5,6 dione on the surface Ti(IV) ions provides open coordination sites for Fe(II) cations which are the starting point for the growth of a layer of Prussian blue polymer. The porous structure of the mesoporous TiO(2) allows the growth, ion by ion of the coordination polymer. Up to four layer of Prussian blue can be deposit without losing the porous structure of the film, which results in an enhanced response of these materials as H(2)O(2) sensors. These porous confined PB modified electrodes are robust sensors that exhibit good reproducibility, environmental stability and high sensitivity towards H(2)O(2) detection. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphologic changes on copper surfaces upon applying an established potential protocol were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed a good correlation between the time employed in the electrode activation and the resulting microstructure and electrochemical activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphologic changes on copper surfaces upon applying an established potential protocol were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed a good correlation between the time employed in the electrode activation and the resulting microstructure and electrochemical activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The galvanic replacement reaction has received considerable interest due to the creation of novel bimetallic nanomaterials that minimise the use of expensive metals while maintaining enhanced electrocatalytic properties for certain reactions. In this work we investigate the galvanic replacement of electrochemically synthesised iron nanocubes on glassy carbon, with gold and palladium. The resultant nanomaterials demonstrate quite a difference in morphology; the original cuboid like template is maintained in the case of gold but destroyed when palladium is used. The electrochemical and electrocatalytic behaviours of these materials are reported for reactions such as methanol oxidation, hydrogen evolution and oxygen reduction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Through layer-by-layer (LBL) assembly technique, iron oxide (Fe3O4) nanoparticles coated by poly (diallyldimethylammonium chloride) (PDDA) and Preyssler-type polyoxometalates (NH4)(14)NaP5W30O110.31H(2)O (P5W30) were alternately deposited on quartz and ITO substrates, and 4-aminobenzoic acid modified glassy carbon electrodes. Thus-prepared multilayer films were characterized by UV-visible spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. It was proved that the multilayer films are uniform and stable. And the electrocatalytic activities of the multilayer films can be fine-tuned by adjusting the assembly conditions in the LBL assembly process, such as the pH of the assembly solution. The multilayer films fabricated from P5W30 solutions dissolved in 0.1 M H2SO4 exhibit high electrocatalytic response and sensitivity toward the reduction of two substrates of important analytical interests, HNO2 and IO3- whereas the films assembled with P5W30 solutions dissolved in 1.0 M H2SO4 show remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). Furthermore, the electrocatalytic properties of the HER of the latter film can be obtained from the former film upon exposure to 1.0 M H2SO4 for several hours.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is reported for the first time that the Pt-TiO2/C catalyst prepared with chemical reduction and sol-gel method showed the excellent electrocatalytic activity and stability for the electrooxidation of methanol. When the atom ratio of Ti to Pt in the catalysts is 1/2, the catalysts showed the best electrocatalytic properties. After the catalyst is treated at 500 degreesC, the performance is further improved. It is hopeful to use the catalyst in the pratical DMFC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ordered intermetallic phases of Pt with several transition metals have been prepared and their electrocatalytic properties studied. In light of these tests it is proposed that these catalysts could be used as electrodes in fuel cells, as they combine an excellent capacity to adsorb organic fuels at the Pt sites with low susceptibility to being poisoned by intermediates and reaction products at the transition-metal sites. An experimental procedure used to obtain the four intermetallic phases Pt-M (M = Mn, Pb, Sb and Sn) is described. The phases thus produced were characterized by X-ray diffraction, scanning electron microscopy with surface analysis by energy-dispersive X-ray spectrometry, scanning tunneling microscopy and X-ray photoelectron spectroscopy. The data thus obtained support the conclusion that the method described here is highly effective for the preparation of Pt-M phases featuring a range of structural and electronic modifications that will allow a useful relation to be established between their physicochemical properties and predicted electrocatalytic activity. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ordered intermetallic phases of Pt with several transition metals have been prepared and their electrocatalytic properties studied. In light of these tests it is proposed that these catalysts could be used as electrodes in fuel cells, as they combine an excellent capacity to adsorb organic fuels at the Pt sites with low susceptibility to being poisoned by intermediates and reaction products at the transition-metal sites. An experimental procedure used to obtain the four intermetallic phases Pt-M (M = Mn, Pb, Sb and Sn) is described. The phases thus produced were characterized by X-ray diffraction, scanning electron microscopy with surface analysis by energy-dispersive X-ray spectrometry, scanning tunneling microscopy and X-ray photoelectron spectroscopy. The data thus obtained support the conclusion that the method described here is highly effective for the preparation of Pt-M phases featuring a range of structural and electronic modifications that will allow a useful relation to be established between their physicochemical properties and predicted electrocatalytic activity. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the increasing popularity of the galvanic replacement approach towards the development of bimetallic nanocatalysts, special emphasis has been focused on minimizing the use of expensive metal (e.g. Pt), in the finally formed nanomaterials (e.g. Ag/Pt system as a possible catalyst for fuel cells). However, the complete removal of the less active sacrificial template is generally not achieved during galvanic replacement, and its residual presence may significantly impact on the electrocatalytic properties of the final material. Here, we investigate the hydrogen evolution reaction (HER) activity of Ag nanocubes replaced with different amounts of Pt, and demonstrate how the bimetallic composition significantly affects the activity of the alloyed nanomaterial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A nanostructured gold surface consisting of closely packed outwardly growing spikes is investigated for the electrochemical detection of dopamine and cytochrome c. A significant electrocatalytic effect for the electrooxidation of both dopamine and ascorbic acid at the nanostructured electrode was found due to the presence of surface active sites which allowed the detection of dopamine in the presence of excess ascorbic acid to be achieved by differential pulse voltammetry. By simple modification with a layer of Nafion, the enhanced electrocatalytic properties of the nanostructured surface was maintained while increasing the selectivity of dopamine detection in the presence of interfering species such as excess ascorbic and uric acids. Also, upon modification of the nanostructured surface with a monolayer of cysteine, the electrochemical response of immobilised cytochrome c in two distinct conformations was observed. This opens up the possibility of using such a nanostructured surface for the characterisation of other biomolecules and in bio-electroanalytical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gold is often considered as an inert material but it has been unequivocally demonstrated that it possesses unique electronic, optical, catalytic and electrocatalytic properties when in a nanostructured form.[1] For the latter the electrochemical behaviour of gold in aqueous media has been widely studied on a plethora of gold samples, including bulk polycrystalline and single-crystal electrodes, nanoparticles, evaporated films as well as electrodeposited nanostructures, particles and thin films.[1b, 2] It is now well-established that the electrochemical behaviour of gold is not as simple as an extended double-layer charging region followed by a monolayer oxide-formation/-removal process. In fact the so-called double-layer region of gold is significantly more complicated and has been investigated with a variety of electrochemical and surface science techniques. Burke and others[3] have demonstrated that significant processes due to the oxidation of low lattice stabilised atoms or clusters of atoms occur in this region at thermally and electrochemically treated electrodes which were confirmed later by Bond[4] to be Faradaic in nature via large-amplitude Fourier transformed ac voltammetric experiments. Supporting evidence for the oxidation of gold in the double-layer region was provided by Bard,[5] who used a surface interrogation mode of scanning electrochemical microscopy to quantify the extent of this process that forms incipient oxides on the surface. These were estimated to be as high as 20% of a monolayer. This correlated with contact electrode resistance measurements,[6] capacitance measurements[7] and also electroreflection techniques...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics.