977 resultados para EBSCO Discovery Service
Resumo:
With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.
Resumo:
We argue that web service discovery technology should help the user navigate a complex problem space by providing suggestions for services which they may not be able to formulate themselves as (s)he lacks the epistemic resources to do so. Free text documents in service environments provide an untapped source of information for augmenting the epistemic state of the user and hence their ability to search effectively for services. A quantitative approach to semantic knowledge representation is adopted in the form of semantic space models computed from these free text documents. Knowledge of the user’s agenda is promoted by associational inferences computed from the semantic space. The inferences are suggestive and aim to promote human abductive reasoning to guide the user from fuzzy search goals into a better understanding of the problem space surrounding the given agenda. Experimental results are discussed based on a complex and realistic planning activity.
Resumo:
This paper demonstrates an experimental study that examines the accuracy of various information retrieval techniques for Web service discovery. The main goal of this research is to evaluate algorithms for semantic web service discovery. The evaluation is comprehensively benchmarked using more than 1,700 real-world WSDL documents from INEX 2010 Web Service Discovery Track dataset. For automatic search, we successfully use Latent Semantic Analysis and BM25 to perform Web service discovery. Moreover, we provide linking analysis which automatically links possible atomic Web services to meet the complex requirements of users. Our fusion engine recommends a final result to users. Our experiments show that linking analysis can improve the overall performance of Web service discovery. We also find that keyword-based search can quickly return results but it has limitation of understanding users’ goals.
Resumo:
Electronic services are a leitmotif in ‘hot’ topics like Software as a Service, Service Oriented Architecture (SOA), Service oriented Computing, Cloud Computing, application markets and smart devices. We propose to consider these in what has been termed the Service Ecosystem (SES). The SES encompasses all levels of electronic services and their interaction, with human consumption and initiation on its periphery in much the same way the ‘Web’ describes a plethora of technologies that eventuate to connect information and expose it to humans. Presently, the SES is heterogeneous, fragmented and confined to semi-closed systems. A key issue hampering the emergence of an integrated SES is Service Discovery (SD). A SES will be dynamic with areas of structured and unstructured information within which service providers and ‘lay’ human consumers interact; until now the two are disjointed, e.g., SOA-enabled organisations, industries and domains are choreographed by domain experts or ‘hard-wired’ to smart device application markets and web applications. In a SES, services are accessible, comparable and exchangeable to human consumers closing the gap to the providers. This requires a new SD with which humans can discover services transparently and effectively without special knowledge or training. We propose two modes of discovery, directed search following an agenda and explorative search, which speculatively expands knowledge of an area of interest by means of categories. Inspired by conceptual space theory from cognitive science, we propose to implement the modes of discovery using concepts to map a lay consumer’s service need to terminologically sophisticated descriptions of services. To this end, we reframe SD as an information retrieval task on the information attached to services, such as, descriptions, reviews, documentation and web sites - the Service Information Shadow. The Semantic Space model transforms the shadow's unstructured semantic information into a geometric, concept-like representation. We introduce an improved and extended Semantic Space including categorization calling it the Semantic Service Discovery model. We evaluate our model with a highly relevant, service related corpus simulating a Service Information Shadow including manually constructed complex service agendas, as well as manual groupings of services. We compare our model against state-of-the-art information retrieval systems and clustering algorithms. By means of an extensive series of empirical evaluations, we establish optimal parameter settings for the semantic space model. The evaluations demonstrate the model’s effectiveness for SD in terms of retrieval precision over state-of-the-art information retrieval models (directed search) and the meaningful, automatic categorization of service related information, which shows potential to form the basis of a useful, cognitively motivated map of the SES for exploratory search.
Resumo:
Building and maintaining software are not easy tasks. However, thanks to advances in web technologies, a new paradigm is emerging in software development. The Service Oriented Architecture (SOA) is a relatively new approach that helps bridge the gap between business and IT and also helps systems remain exible. However, there are still several challenges with SOA. As the number of available services grows, developers are faced with the problem of discovering the services they need. Public service repositories such as Programmable Web provide only limited search capabilities. Several mechanisms have been proposed to improve web service discovery by using semantics. However, most of these require manually tagging the services with concepts in an ontology. Adding semantic annotations is a non-trivial process that requires a certain skill-set from the annotator and also the availability of domain ontologies that include the concepts related to the topics of the service. These issues have prevented these mechanisms becoming widespread. This thesis focuses on two main problems. First, to avoid the overhead of manually adding semantics to web services, several automatic methods to include semantics in the discovery process are explored. Although experimentation with some of these strategies has been conducted in the past, the results reported in the literature are mixed. Second, Wikipedia is explored as a general-purpose ontology. The benefit of using it as an ontology is assessed by comparing these semantics-based methods to classic term-based information retrieval approaches. The contribution of this research is significant because, to the best of our knowledge, a comprehensive analysis of the impact of using Wikipedia as a source of semantics in web service discovery does not exist. The main output of this research is a web service discovery engine that implements these methods and a comprehensive analysis of the benefits and trade-offs of these semantics-based discovery approaches.
Resumo:
More and more traditional manufacturing companies form or join inter-organizational networks to bundle their physical products with related services to offer superior value propositions to their customers. Some of these product-related services can be digitized completely and thus fully delivered electronically. Other services require the physical integration of external factors, but can still be coordinated electronically. In both cases companies and consumers face the problem of discovering appropriate product-related service offerings in the network or market. Based on ideas from the web service discovery discipline we propose a meet-in-the-middle approach between heavy-weight semantic technologies and simple boolean search to address this issue. Our approach is able to consider semantic relations in service descriptions and queries and thus delivers better results than syntax-based search. However – unlike most semantic approaches – it does not require the use of any formal language for semantic markup and thus requires less resources and skills for both service providers and consumers. To fully realize the potentials of the proposed approach a domain ontology is needed. In this research-in-progress paper we construct such an ontology for the domain of product-service bundles through analysis and synthesis of related work on service description. This will serve as an anchor for future research to iteratively improve and evaluate the ontology through collaborative design efforts and practical application.
Resumo:
The management and coordination of business-process collaboration experiences changes because of globalization, specialization, and innovation. Service-oriented computing (SOC) is a means towards businessprocess automation and recently, many industry standards emerged to become part of the service-oriented architecture (SOA) stack. In a globalized world, organizations face new challenges for setting up and carrying out collaborations in semi-automating ecosystems for business services. For being efficient and effective, many companies express their services electronically in what we term business-process as a service (BPaaS). Companies then source BPaaS on the fly from third parties if they are not able to create all service-value inhouse because of reasons such as lack of reasoures, lack of know-how, cost- and time-reduction needs. Thus, a need emerges for BPaaS-HUBs that not only store service offers and requests together with information about their issuing organizations and assigned owners, but that also allow an evaluation of trust and reputation in an anonymized electronic service marketplace. In this paper, we analyze the requirements, design architecture and system behavior of such a BPaaS-HUB to enable a fast setup and enactment of business-process collaboration. Moving into a cloud-computing setting, the results of this paper allow system designers to quickly evaluate which services they need for instantiationg the BPaaS-HUB architecture. Furthermore, the results also show what the protocol of a backbone service bus is that allows a communication between services that implement the BPaaS-HUB. Finally, the paper analyzes where an instantiation must assign additional computing resources vor the avoidance of performance bottlenecks.
Resumo:
Service discovery is vital in ubiquitous applications, where a large number of devices and software components collaborate unobtrusively and provide numerous services without user intervention. Existing service discovery schemes use a service matching process in order to offer services of interest to the users. Potentially, the context information of the users and surrounding environment can be used to improve the quality of service matching. To make use of context information in service matching, a service discovery technique needs to address certain challenges. Firstly, it is required that the context information shall have unambiguous representation. Secondly, the devices in the environment shall be able to disseminate high level and low level context information seamlessly in the different networks. And thirdly, dynamic nature of the context information be taken into account. We propose a C-IOB(Context-Information, Observation and Belief) based service discovery model which deals with the above challenges by processing the context information and by formulating the beliefs based on the observations. With these formulated beliefs the required services will be provided to the users. The method has been tested with a typical ubiquitous museum guide application over different cases. The simulation results are time efficient and quite encouraging.
Resumo:
Service provisioning in assisted living environments faces distinct challenges due to the heterogeneity of networks, access technology, and sensing/actuation devices in such an environment. Existing solutions, such as SOAP-based web services, can interconnect heterogeneous devices and services, and can be published, discovered and invoked dynamically. However, it is considered heavier than what is required in the smart environment-like context and hence suffers from performance degradation. Alternatively, REpresentational State Transfer (REST) has gained much attention from the community and is considered as a lighter and cleaner technology compared to the SOAP-based web services. Since it is simple to publish and use a RESTful web service, more and more service providers are moving toward REST-based solutions, which promote a resource-centric conceptualization as opposed to a service-centric conceptualization. Despite such benefits of REST, the dynamic discovery and eventing of RESTful services are yet considered a major hurdle to utilization of the full potential of REST-based approaches. In this paper, we address this issue, by providing a RESTful discovery and eventing specification and demonstrate it in an assisted living healthcare scenario. We envisage that through this approach, the service provisioning in ambient assisted living or other smart environment settings will be more efficient, timely, and less resource-intensive.
Resumo:
The dream of pervasive computing is slowly becoming a reality. A number of projects around the world are constantly contributing ideas and solutions that are bound to change the way we interact with our environments and with one another. An essential component of the future is a software infrastructure that is capable of supporting interactions on scales ranging from a single physical space to intercontinental collaborations. Such infrastructure must help applications adapt to very diverse environments and must protect people's privacy and respect their personal preferences. In this paper we indicate a number of limitations present in the software infrastructures proposed so far (including our previous work). We then describe the framework for building an infrastructure that satisfies the abovementioned criteria. This framework hinges on the concepts of delegation, arbitration and high-level service discovery. Components of our own implementation of such an infrastructure are presented.
Resumo:
The concept of being ‘patient-centric’ is a challenge to many existing healthcare service provision practices. This paper focuses on the issue of referrals, where multiple stakeholders, i.e. general practitioners and patients, are encouraged to make a consensual decision based on patient needs. In this paper, we present an ontology-enabled healthcare service provision, which facilitates both patients and GPs in jointly deciding upon the referral decision. In the healthcare service provision model, we define three types of profile, which represents different stakeholders’ requirements. This model also comprises of a set of healthcare service discovery processes: articulating a service need, matching the need with the healthcare service offerings, and deciding on a best-fit service for acceptance. As a result, the healthcare service provision can carry out coherent analysis using personalised information and iterative processes that deal with requirements change over time.
Resumo:
This paper presents a hierarchical clustering method for semantic Web service discovery. This method aims to improve the accuracy and efficiency of the traditional service discovery using vector space model. The Web service is converted into a standard vector format through the Web service description document. With the help of WordNet, a semantic analysis is conducted to reduce the dimension of the term vector and to make semantic expansion to meet the user’s service request. The process and algorithm of hierarchical clustering based semantic Web service discovery is discussed. Validation is carried out on the dataset.