968 resultados para E1A associated p300 protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human synovial sarcoma has been shown to exclusively harbor the chromosomal translocation t(X;18) that produces the chimeric gene SYT-SSX. However, the role of SYT-SSX in cellular transformation remains unclear. In this study, we have established 3Y1 rat fibroblast cell lines that constitutively express SYT, SSX1, and SYT-SSX1 and found that SYT-SSX1 promoted growth rate in culture, anchorage-independent growth in soft agar, and tumor formation in nude mice. Deletion of the N-terminal 181 amino acids of SYT-SSX1 caused loss of its transforming activity. Furthermore, association of SYT-SSX1 with the chromatin remodeling factor hBRM/hSNF2α, which regulates transcription, was demonstrated in both SYT-SSX1-expressing 3Y1 cells and in the human synovial sarcoma cell line HS-SY-II. The binding region between the two molecules was shown to reside within the N-terminal 181 amino acids stretch (aa 1–181) of SYT-SSX1 and 50 amino acids (aa 156–205) of hBRM/hSNF2α and we found that the overexpression of this binding region of hBRM/hSNF2α significantly suppressed the anchorage-independent growth of SYT-SSX1-expressing 3Y1 cells. To analyze the transcriptional regulation by SYT-SSX1, we established conditional expression system of SYT-SSX1 and examined the gene expression profiles. The down-regulation of potential tumor suppressor DCC was observed among 1,176 genes analyzed by microarray analysis, and semi-quantitative reverse transcription–PCR confirmed this finding. These data clearly demonstrate transforming activity of human oncogene SYT-SSX1 and also involvement of chromatin remodeling factor hBRM/hSNF2α in human cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In higher plants, dominant mitochondrial mutations are associated with pollen sterility. This phenomenon is known as cytoplasmic male sterility (CMS). It is thought that the disruption in pollen development is a consequence of mitochondrial dysfunction. To provide definitive evidence that expression of an abnormal mitochondrial gene can interrupt pollen development, a CMS-associated mitochondrial DNA sequence from common bean, orf239, was introduced into the tobacco nuclear genome. Several transformants containing the orf239 gene constructs, with or without a mitochondrial targeting sequence, exhibited a semi sterile or male-sterile phenotype. Expression of the gene fusions in transformed anthers was confirmed using RNA gel blotting, ELISA, and light and electron microscopic immunocytochemistry. Immunocytological analysis showed that the ORF239 protein could associate with the cell wall of aberrant developing microspores. This pattern of extracellular localization was earlier observed in the CMS common bean line containing orf239 in the mitochondrial genome. Results presented here demonstrate that ORF239 causes pollen disruption in transgenic tobacco plants and may do so without targeting of the protein to the mitochondrion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene encoding human myosin VIIA is responsible for Usher syndrome type III (USH1B), a disease which associates profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. The reconstituted cDNA sequence presented here predicts a 2215 amino acid protein with a typical unconventional myosin structure. This protein is expected to dimerize into a two-headed molecule. The C terminus of its tail shares homology with the membrane-binding domain of the band 4.1 protein superfamily. The gene consists of 48 coding exons. It encodes several alternatively spliced forms. In situ hybridization analysis in human embryos demonstrates that the myosin VIIA gene is expressed in the pigment epithelium and the photoreceptor cells of the retina, thus indicating that both cell types may be involved in the USH1B retinal degenerative process. In addition, the gene is expressed in the human embryonic cochlear and vestibular neuroepithelia. We suggest that deafness and vestibular dysfunction in USH1B patients result from a defect in the morphogenesis of the inner ear sensory cell stereocilia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that, after removal of the nascent polypeptide-associated complex (NAC) from ribosome-associated nascent chains, ribosomes synthesizing proteins lacking signal peptides are efficiently targeted to the endoplasmic reticulum (ER) membrane. After this mistargeting, translocation across the ER membrane occurs, albeit less efficiently than for a nascent secretory polypeptide, perhaps because the signal peptide is needed to catalyze the opening of the translocation pore. The mistargeting was prevented by the addition of purified NAC and was shown not to be mediated by the signal recognition particle and its receptor. Instead, it appears to be a consequence of the intrinsic affinity of ribosomes for membrane binding sites, since it can be blocked by competing ribosomes that lack associated nascent polypeptides. We propose that, when bound to a signalless ribosome-associated nascent polypeptide, NAC sterically blocks the site in the ribosome for membrane binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity-regulated cytoskeleton-associated (Arc) protein controls synaptic strength by facilitating AMPA receptor (AMPAR) endocytosis. Here we demonstrate that Arc targets AMPAR to be internalized through a direct interaction with the clathrin-adaptor protein 2 (AP-2). We show that Arc overexpression in dissociated hippocampal neurons obtained from C57BL/6 mouse reduces the density of AMPAR GluA1 subunits at the cell surface and reduces the amplitude and rectification of AMPAR-mediated miniature-EPSCs (mEPSCs). Mutations of Arc, that prevent the AP-2 interaction reduce Arc-mediated endocytosis of GluA1 and abolish the reduction in AMPAR-mediated mEPSC amplitude and rectification. Depletion of the AP-2 subunit µ2 blocks the Arc-mediated reduction in mEPSC amplitude, an effect that is restored by reintroducing µ2. The Arc-AP-2 interaction plays an important role in homeostatic synaptic scaling as the Arc-dependent decrease in mEPSC amplitude, induced by a chronic increase in neuronal activity, is inhibited by AP-2 depletion. These data provide a mechanism to explain how activity-dependent expression of Arc decisively controls the fate of AMPAR at the cell surface and modulates synaptic strength, via the direct interaction with the endocytic clathrin adaptor AP-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The myosin-associated giant protein kinases twitchin and titin are composed predominantly of fibronectin- and immunoglobulin-like modules, We report the crystal structures of two autoinhibited twitchin kinase fragments, one from Aplysia and a larger fragment from Caenorhabditis elegans containing an additional C-terminal immunoglobulin-like domain, The structure of the longer fragment shoes that the immunoglobulin domain contacts the protein kinase domain on the opposite side from the catalytic cleft, laterally exposing potential myosin binding residues, Together, the structures reveal the cooperative interactions between the autoregulatory region and the residues from the catalytic domain involved in protein substrate binding, ATP binding, catalysis and the activation loop, and explain the differences between the observed autoinhibitory mechanism and the one found in the structure of calmodulin-dependent kinase I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several evidences suggest that astrocytes release small transmitter molecules, peptides, and protein factors via regulated exocytosis, implying that they function as specialized neurosecretory cells. However, very little is known about the molecular and functional properties of regulated secretion in astrocytes in the adult brain. Establishing these properties is central to the understanding of the communication mode(s) of these cells and their role(s) in the control of synaptic functions and of cerebral blood flow. In this study, we have set-up a high-resolution confocal microscopy approach to distinguish protein expression in astrocytic structures and neighboring synaptic terminals in adult brain tissue. This approach was applied to investigate the expression pattern of core SNARE proteins for vesicle fusion in the dentate gyrus and CA1 regions of the mouse hippocampus. Our comparative analysis shows that astrocytes abundantly express, in their cell body and main processes, all three protein partners necessary to form an operational SNARE complex but not in the same isoforms expressed in neighbouring synaptic terminals. Thus, SNAP25 and VAMP2 are absent from astrocytic processes and typically concentrated in terminals, while SNAP23 and VAMP3 have the opposite expression pattern. Syntaxin 1 is present in both synaptic terminals and astrocytes. These data support the view that astrocytes in the adult hippocampus can communicate via regulated exocytosis and also indicates that astrocytic exocytosis may differ in its properties from action potential-dependent exocytosis at neuronal synapses, as it relies on a distinctive set of SNARE proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Apoptosis is known to play a key role in cell death after retinal ischemia. However, little is known about the kinetics of the signaling pathways involved and their contribution to this process. The aim of this study was to determine whether changes in the expression of molecules in the mitochondrial apoptotic pathway might explain the progression of retinal damage following ischemia/reperfusion. METHODS: Retinal ischemia was induced by elevating intraocular pressure in the vitreous cavity to 150 mmHg for a period of 60 min. At time 0, 3 h (early phase), and 24 h (late phase) after reperfusion, the retinas were harvested and modifications in the expression of Bax, Bak, Bcl-2, and Bcl-x(L) as well as caspase-3 and -7, were examined by qPCR and, in some cases, by western blot. RESULTS: qPCR analysis performed at the early phase after ischemia revealed a time dependent decrease in Bax, Bak, and Bcl-x(L) and no alteration in Bcl-2 mRNA expression in response to retinal ischemia. At the protein level, proapoptotic Bax and Bak were not modulated while Bcl-2 and Bcl-x(L) were significantly upregulated. At this stage, the Bax per Bcl-2 and Bax:Bcl-x(L) ratios were not modified. At the late phase of recovery, Bax and Bcl-x(L) mRNAs were downregulated while Bak was increased. Increased Bax:Bcl-2 and Bax:Bcl-x(L) ratios at both the mRNA and protein levels were observed 24 h after the ischemic insult. Analysis of caspases associated with mitochondria-mediated apoptosis revealed a specific increase in the expression of caspase-3 in the ischemic retinas 24 h after reperfusion, and a decrease in the expression of caspase-7. CONCLUSIONS: This study revealed that Bcl-2-related family members were differently regulated in the early and late phases after an ischemic insult. We showed that the Bax:Bcl-2 and Bax:Bcl-x(L) balances were not affected in the initial phases, but the Bax:Bcl-x(L) ratio shifted toward apoptosis during the late phase of recovery. This shift was reinforced by caspase-3 upregulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RPE65-related Leber's congenital amaurosis (LCA) is a rod-cone dystrophy whose clinical outcome is mainly attributed to the loss of rod photoreceptors followed by cone degeneration. Pathogenesis in Rpe65(-/-) mice is characterized by a slow and progressive degeneration of rods dependent on the constitutive activation of unliganded opsin. We previously reported that this opsin-mediated apoptosis of rods was dependent on Bcl-2-apoptotic pathway and Bax-induced pro-death activity. In this study, we report early initial apoptosis in the newly differentiated retina of Rpe65(-/-) mice. Apoptotic photoreceptors were identified as rods and resulted from pathological phototransduction signaling. This wave of early apoptosis triggered Bcl-2-related pathway and Bax apoptotic activity, while activation of the caspases was not induced. Following cellular stress, multiple signaling pathways are initiated which either commit cells to death or trigger pro-survival responses including autophagy. We report that Bcl-2-related early rod apoptosis was associated with the upregulation of autophagy markers including chaperone-mediated autophagy (CMA) substrate receptor LAMP-2 and lysosomal hydrolases Cathepsin S and Lysozyme. This suggests that lysosomal-mediated autophagy may be triggered in response to early rod apoptosis in Rpe65-LCA disease. These results highlight that Rpe65-related primary stress induces early signaling events, which trigger Bax-induced-apoptotic pathway and autophagy-mediated cellular response. These events may determine retinal cell fate, progression and severity of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent genetic studies have implicated a number of candidate genes in the pathogenesis of Autism Spectrum Disorder (ASD). Polymorphisms of CNTNAP2 (contactin-associated like protein-2), a member of the neurexin family, have already been implicated as a susceptibility gene for autism by at least 3 separate studies. We investigated variation in white and grey matter morphology using structural MRI and diffusion tensor imaging. We compared volumetric differences in white and grey matter and fractional anisotropy values in control subjects characterised by genotype at rs7794745, a single nucleotide polymorphism in CNTNAP2. Homozygotes for the risk allele showed significant reductions in grey and white matter volume and fractional anisotropy in several regions that have already been implicated in ASD, including the cerebellum, fusiform gyrus, occipital and frontal cortices. Male homozygotes for the risk alleles showed greater reductions in grey matter in the right frontal pole and in FA in the right rostral fronto-occipital fasciculus compared to their female counterparts who showed greater reductions in FA of the anterior thalamic radiation. Thus a risk allele for autism results in significant cerebral morphological variation, despite the absence of overt symptoms or behavioural abnormalities. The results are consistent with accumulating evidence of CNTNAP2's function in neuronal development. The finding suggests the possibility that the heterogeneous manifestations of ASD can be aetiologically characterised into distinct subtypes through genetic-morphological analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in RPE65 protein is characterized by the loss of photoreceptors, although the molecular pathways triggering retinal cell death remain largely unresolved. The role of the Bcl-2 family of proteins in retinal degeneration is still controversial. However, alteration in Bcl-2-related proteins has been observed in several models of retinal injury. In particular, Bax has been suggested to play a crucial role in apoptotic pathways in murine glaucoma model as well as in retinal detachment-associated cell death. We demonstrated that Bcl-2-related signaling pathway is involved in Rpe65-dependent apoptosis of photoreceptors during development of the disease. Pro-apoptotic Bax alpha and beta isoforms were upregulated in diseased retina. This was associated with a progressive reduction of anti-apoptotic Bcl-2, reflecting imbalanced Bcl-2/Bax ratio as the disease progresses. Moreover, specific translocation of Bax beta from cytosol to mitochondria was observed in Rpe65-deficient retina. This correlated with the initiation of photoreceptor cell loss at 4 months of age, and further increased during disease development. Altogether, these data suggest that Bcl-2-apoptotic pathway plays a crucial role in Leber's congenital amaurosis disease. They further highlight a new regulatory mechanism of Bax-dependent apoptosis based on regulated expression and activation of specific isoforms of this protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation examined how the nutritional status of rats fed a low-protein diet was affected when the animals were treated with the ß-2 selective agonist clenbuterol (CL). Males (4 weeks old) from an inbred, specific-pathogen-free strain of hooded rats maintained at the Dunn Nutritional Laboratory were used in the experiments (N = 6 rats per group). CL treatment (Ventipulmin, Boehringer-Ingelheim Ltd., 3.2 mg/kg diet for 2 weeks) caused an exacerbation of the symptoms associated with protein deficiency in rats. Plasma albumin concentrations, already low in rats fed a low-protein diet (group A), were further reduced in CL rats (A = 25.05 ± 0.31 vs CL = 23.64 ± 0.30 g/l, P<0.05). Total liver protein decreased below the level seen in either pair-fed animals (group P) or animals with free access to the low-protein diet (A = 736.56 ± 26 vs CL = 535.41 ± 54 mg, P<0.05), whereas gastrocnemius muscle protein was higher than the values normally described for control (C) animals (C = 210.88 ± 3.2 vs CL = 227.14 ± 1.7 mg/g, P<0.05). Clenbuterol-treated rats also showed a reduction in growth when compared to P rats (P = 3.2 ± 1.1 vs CL = -10.2 ± 1.9 g, P<0.05). This was associated with a marked decrease in fat stores (P = 5.35 ± 0.81 vs CL = 2.02 ± 0.16 g, P<0.05). Brown adipose tissue (BAT) cytochrome oxidase activity, although slightly lower than in P rats (P = 469.96 ± 16.20 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05), was still much higher than in control rats (C = 159.55 ± 11.54 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05). The present findings support the hypothesis that an increased muscle protein content due to clenbuterol stimulation worsened amino acid availability to the liver and further reduced albumin synthesis causing exacerbation of hypoalbuminemia in rats fed a low-protein diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.