40 resultados para E. Pultrusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a new steel heated pultrusion die was designed, developed and manufactured to produce U200 glass fibre reinforced thermosetting matrix (GRP) profiles. The finite element analysis (FEA) was used to predict and optimise the developed die heating by using cylindrical electrical powered cartridges. To assess the new die performance it was mounted in the 120 kN pultrusion line of the Portuguese company Vidropol SA and used to produce continuously U200 profiles able to meet all requirements specified for the E23 grade accordingly to the European Standard EN 13706: 2002. After setting up the type, orientation and sequence of layers in the U 200 laminate, different types of thermosetting resins were used in its production. Orthophthalic, isophthalic and bisphenolic unsaturated polyester as well as vinylester resins were used to produce glass fibre reinforced U 200 composite profiles. All applied resins were submitted to SPI gel tests in order to select the more appropriated catalyst system and optimise the processing variables to be used in each case, namely, pultrusion pull-speed and die temperature. The best pultrusion operational conditions were selected by varying and monitoring the pull-speed and die temperature and, at the same time, measuring the temperature on the manufactured U 200 profile during processing. Finally, the produced U200 profiles were submitted to visual inspection, calcination and mechanical tests, namely, flexural, tensional and interlaminar shear strength (ILSS) tests, to assess their accomplishment with the EN 13706 requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibre reinforced thermoplastic pre impregnated materials produced continuously by diverse methods and processing conditions were used to produce composites using pultrusion. The processing windows used to produce these materials and composites profiles were optimized by using the Taguchi / DOE (Design of Experiments) methods. Composites were manufactured by pultrusion and compression moulding and subsequently submitted to mechanical testing and microscopy analysis. The obtained results were compared with the expected theoretical ones predicted from the Rule of Mixtures (ROM) and with those of similar engineering conventional available materials. The results obtained shown that produced composites have adequate properties for applications in common and structural engineering markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Towpregs based on different fibres and thermoplastic matrices were processed for highly demanding and more commercial applications by different composite processing technologies. In the technologies used, compression moulding and pultrusion, the final composite pr ocessing parameters were studied in order to obtain composites with adequate properties at industrial compatible production rates. The produced towpregs were tested to verify its polymer content and degree of impregnation. The obtained results have shown t hat the coating line enabled to produce, with efficiency and industrial scale speed rates, thermoplastic matrix towpregs that may be used to manufacture composites for advanced and larger volume commercial markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho teve como principal objectivo optimizar um equipamento de produção de perfis pultrudidos já existente na empresa ALTO – PERFIS PULTRUDIDOS, Lda. O trabalho surgiu na sequência de um Projecto financiado pelo Programa QREN – Quadro de Referência Estratégico Nacional, determinadas debilidades identificadas no processo de pultrusão, principalmente ao nível da eficiência térmica na fieira e de alguma falta de produtividade devida às diversas operações necessárias à mudança da fieira consoante o tipo de perfil a produzir. Após um levantamento prévio da situação e uma adequada segmentação da máquina nas diferentes partes que a constituem e que contribuem activamente para o processo de produção dos perfis, foi elaborada uma lista de prioridades e foram sendo procuradas as soluções mais adequadas para cada caso, sempre com a participação activa da empresa, com vista à sua implementação final. A metodologia adoptada passou sempre por uma reunião inicial com os representantes da empresa e com os orientadores, efectuando-se a tradicional “tempestade de ideias”. Depois da correspondente maturação, desenvolvimento e aprovação prévia, por parte da empresa, as ideias foram desenvolvidas e até implementadas na sua maioria. O saldo poderá considerar-se extremamente positivo, tanto para a empresa que, ao implementar as soluções, as validou e ganhou competitividade, como para as pessoas envolvidas neste projecto, através da enorme aprendizagem adquirida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, at both upstream and downstream of the production process, namely: i) Adoption of a new heating system for pultrusion die-tool in the manufacturing process, more effective and with minor heat losses; ii) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A realização deste trabalho teve como principal objectivo proceder ao projecto e realização de dois sistemas de produção de perfis pultrudidos híbridos a acoplar aos equipamentos de pultrusão já instalados na ALTO – PERFIS PULTRUDIDOS, Lda. A realização de perfis pultrudidos híbridos visa melhorar as características de isolamento térmico e acústico dos tubos habitualmente feitos por pultrusão, incrementando simultaneamente a sua resistência, através da melhoria do momento de inércia do perfil, sem que haja um aumento significativo do peso do conjunto. O projecto teve como base de trabalho dois sistemas de produção completamente distintos: (a) a existência de barras de cortiça e de poliuretano (pré-formas) sobre as quais se vai efectuar a pultrusão de um tubo que abraça as barras e (b) o uso de resíduos de pultrusão como forma de enchimento dos tubos, durante o seu processo produtivo. Estes equipamentos foram projectados e parcialmente fabricados, antevendo-se que os mesmos entrem em funcionamento muito brevemente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the waste reuse in polymer mortars and concrete. © 2011, Advanced Engineering Solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pultruded products are being targeted by a growing demand due to its excellent mechanical properties and low chemical reactivity, ensuring a low level of maintenance operations and allowing an easier assembly operation process than equivalent steel bars. In order to improve the mechanical drawing process and solve some acoustic and thermal insulation problems, pultruded pipes of glass fibre reinforced plastics (GFRF) can be filled with special products that increase their performance regarding the issues previously referred. The great challenge of this work was drawing a new equipment able to produce pultruded pipes filled with cork or polymeric pre-shaped bars as a continuous process. The project was carried out successfully and the new equipment was built and integrated in the pultrusion equipment already existing, allowing to obtain news products with higher added-value in the market, covering some needs previously identified in the field of civil construction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent ecoefficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study the potential eco-efficiency performance of a pultrusion manufacturing company was assessed. Indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures in the production process of glass fibre reinforced polymers (GFRP) pultrusion profiles. Two different approaches were foreseen: 1)Adoption of a new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; and 2) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The World Business Council for Sustainable Development (WBCSD) defines Eco-Efficiency as follows: ‘Eco- Efficiency is achieved by the delivery of competitively priced-goods and services that satisfy human needs and bring quality of life, while progressively reducing ecological impacts and resource intensity throughout the life-cycle to a level at least in line with the earth’s estimated carrying capacity’. Eco-Efficiency is under this point of view a key concept for sustainable development, bringing together economic and ecological progress. Measuring the Eco-Efficiency of a company, factory or business, is a complex process that involves the measurement and control of several and relevant parameters or indicators, globally applied to all companies in general, or specific according to the nature and specificities of the business itself. In this study, an attempt was made in order to measure and evaluate the eco-efficiency of a pultruded composite processing company. For this purpose the recommendations of WBCSD [1] and the directives of ISO 14301 standard [2] were followed and applied. The analysis was restricted to the main business branch of the company: the production and sale of standard GFRP pultrusion profiles. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined according to ISO 14031 recommendations. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and ecoefficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; b) Implementation of new software for stock management (raw materials and final products) that minimize production failures and delivery delays to final consumer; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. In particular, the last approach seems to significantly improve the eco-efficient performance of the company. Currently, by-products and wastes generated in the manufacturing process of GFRP profiles are landfilled, with supplementary added costs to this company traduced by transport of scrap, landfill taxes and required test analysis to waste materials. However, mechanical recycling of GFRP waste materials, with reduction to powdered and fibrous particulates, constitutes a recycling process that can be easily attained on heavy-duty cutting mills. The posterior reuse of obtained recyclates, either into a close-looping process, as filler replacement of resin matrix of GFRP profiles, or as reinforcement of other composite materials produced by the company, will drive to both costs reduction in raw materials and landfill process, and minimization of waste landfill. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behavior of polyester polymer mortar (PM) materials was assessed. For this purpose, different contents of GFRP recyclates (between 4% up to 12% in mass), were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of silane coupling agent addition to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers, jointly with unfinished products and scrap resulting from pultrusion manufacturing process, are landfilled, with supplementary added costs. Thus, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and reinforcement for PM materials, with significant improvements on mechanical properties with regard to non-modified formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, glass fibre reinforced polymer (GFRP) waste recycling is very limited and restricted by thermoset nature of binder matrix and lack of economically viable enduse applications for the recyclates. In this study, efforts were made in order to recycle grinded GFRP waste proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, a mix of powdered and fibrous materials, were incorporated into polyester based mortars as fine aggregate and filler replacements, at different load contents (between 4% up to 12% of total mass) and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Test results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse in concrete-polymer composites.