172 resultados para Dysplastic Nevi
Resumo:
The iliocapsularis muscle is a little known muscle overlying the anterior hip capsule postulated to function as a stabilizer of dysplastic hips. Theoretically, this muscle would be hypertrophied in dysplastic hips and, conversely, atrophied in stable and well-constrained hips. However, these observations have not been confirmed and the true function of this muscle remains unknown.
Resumo:
The second part of the present review article presents and discusses the current literature regarding cytodiagnostic aspects, pathogenesis, therapy, incidence of recurrence, and malignant transformation rate of oral erythroplakia (OE) and oral erythroleukoplakia (OEL). Oral cytopathology, eventually in combination with DNA cytometry, can add valuable information to conventional histopathology, but is not able yet to replace the aforementioned. Numerous molecular genetic variants have been studied in precancerous lesions to gain knowledge about the prognosis of these lesions. Still, there are no evidence-based parameters available to safely detect precursor lesions that will undergo malignant transformation in the future. Excision of OE and OEL should be performed with a margin of safety using the CO2 laser or a scalpel. Data about incidence of recurrence and malignant tranformation rates of OE are mostly based upon case reports or case series. The OEL has a significantly higher risk of malignant transformation than oral leukoplakias.
Resumo:
Oral erythroplakia (OE) and oral erythroleukoplakia (OEL; synonym: speckled leukoplakia) are working diagnoses for red and red-white lesions of the oral mucosa after exclusion of all other possible diagnoses for lesions with a similar clinical appearance. A good knowledge of oral medicine and possible differential diagnoses of oral mucosal pathologies is mandatory to correctly detect OE and OEL on this exclusion basis. In the present review article in a series of two, epidemiologic data, etiologic factors, possible differential diagnoses, and the histopathologic characteristics of OE and OEL will be presented and discussed regarding the current literature. A thorough histopathologic examination of these epithelial precursor lesions is mandatory to recognise the presence and the severity of epithelial dysplasia, which is a decisive factor for the subsequent treatment planning.
Resumo:
heroisgegeben fon Šemuel Deṭmold
Resumo:
BACKGROUND Residual acetabular dysplasia is seen in combination with femoral pathomorphologies including an aspherical femoral head and valgus neck-shaft angle with high antetorsion. It is unclear how these femoral pathomorphologies affect range of motion (ROM) and impingement zones after periacetabular osteotomy. QUESTIONS/PURPOSES (1) Does periacetabular osteotomy (PAO) restore the typically excessive ROM in dysplastic hips compared with normal hips; (2) how do impingement locations differ in dysplastic hips before and after PAO compared with normal hips; (3) does a concomitant cam-type morphology adversely affect internal rotation; and (4) does a concomitant varus-derotation intertrochanteric osteotomy (IO) affect external rotation? METHODS Between January 1999 and March 2002, we performed 200 PAOs for dysplasia; of those, 27 hips (14%) met prespecified study inclusion criteria, including availability of a pre- and postoperative CT scan that included the hip and the distal femur. In general, we obtained those scans to evaluate the pre- and postoperative acetabular and femoral morphology, the degree of acetabular reorientation, and healing of the osteotomies. Three-dimensional surface models based on CT scans of 27 hips before and after PAO and 19 normal hips were created. Normal hips were obtained from a population of CT-based computer-assisted THAs using the contralateral hip after exclusion of symptomatic hips or hips with abnormal radiographic anatomy. Using validated and computerized methods, we then determined ROM (flexion/extension, internal- [IR]/external rotation [ER], adduction/abduction) and two motion patterns including the anterior (IR in flexion) and posterior (ER in extension) impingement tests. The computed impingement locations were assigned to anatomical locations of the pelvis and the femur. ROM was calculated separately for hips with (n = 13) and without (n = 14) a cam-type morphology and PAOs with (n = 9) and without (n = 18) a concomitant IO. A post hoc power analysis based on the primary research question with an alpha of 0.05 and a beta error of 0.20 revealed a minimal detectable difference of 4.6° of flexion. RESULTS After PAO, flexion, IR, and adduction/abduction did not differ from the nondysplastic control hips with the numbers available (p ranging from 0.061 to 0.867). Extension was decreased (19° ± 15°; range, -18° to 30° versus 28° ± 3°; range, 19°-30°; p = 0.017) and ER in 0° flexion was increased (25° ± 18°; range, -10° to 41° versus 38° ± 7°; range, 17°-41°; p = 0.002). Dysplastic hips had a higher prevalence of extraarticular impingement at the anteroinferior iliac spine compared with normal hips (48% [13 of 27 hips] versus 5% [one of 19 hips], p = 0.002). A PAO increased the prevalence of impingement for the femoral head from 30% (eight of 27 hips) preoperatively to 59% (16 of 27 hips) postoperatively (p = 0.027). IR in flexion was decreased in hips with a cam-type deformity compared with those with a spherical femoral head (p values from 0.002 to 0.047 for 95°-120° of flexion). A concomitant IO led to a normalization of ER in extension (eg, 37° ± 7° [range, 21°-41°] of ER in 0° of flexion in hips with concomitant IO compared with 38° ± 7° [range, 17°-41°] in nondysplastic control hips; p = 0.777). CONCLUSIONS Using computer simulation of hip ROM, we could show that the PAO has the potential to restore the typically excessive ROM in dysplastic hips. However, a PAO can increase the prevalence of secondary intraarticular impingement of the aspherical femoral head and extraarticular impingement of the anteroinferior iliac spines in flexion and internal rotation. A cam-type morphology can result in anterior impingement with restriction of IR. Additionally, a valgus hip with high antetorsion can result in posterior impingement with decreased ER in extension, which can be normalized with a varus derotation IO of the femur. However, indication of an additional IO needs to be weighed against its inherent morbidity and possible complications. The results are based on a limited number of hips with a pre- and postoperative CT scan after PAO. Future prospective studies are needed to verify the current results based on computer simulation and to test their clinical importance.
Resumo:
ṿe-nosefu ʿalehem heʿarot ... Refaʾel be-r. Y. Firśṭenṭhal ...
Resumo:
... übersetzt und erläutert von Raphael Breuer
Resumo:
Mode of access: Internet.
Resumo:
v.2 designated as ḥeleḳ rishon, maḥberet shenyah on Hebrew t.p., but as 2. band, 1. theil on added German t.p.
Resumo:
Mode of access: Internet.
Resumo:
v.1-5 Be-reshit-Devarim--v.6-7 Yehoshuaʻ-Shofṭim--8-9 Shemuʾel--10-11 Melakhim--v. 12 Yeshaʻyah--v.13 Yirmeyah--v.14 Yeḥezḳel--v.15 Tere ʻaśar--v.16Tehilim--v.17 Mishle--v.20-22 Daniʾel, ʻEzra, Neḥemyah--23-24 Divre ha-yamim.
Resumo:
Mode of access: Internet.
Resumo:
British and Foreign Bible Society, no. 8491.
Resumo:
v.2 Shemot--v.3 Ṿa-yiḳra--v.5 Devarim--v.6-7 Yehoshuʻa-Shofṭim-- v.8-9 Shemuʾel alef-bet--v.10-11 Melakhim alef-bet-- v.12 Yeshaʻyah--v.13 Yirmeyah--v.14 Yeḥezḳel--v.15 Tere ʻaśar--v.17-18 Mishle-Iyov--20-22 Daniʾel, ʻEzra, Neḥemyah--v.23-24 Divre ha-yamim alef-bet.