940 resultados para Dysfunction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose This study aims to explore the scope of consumers’ defective co-creation behaviour in professional service encounters. One of the founding premises of service-dominant logic (Vargo and Lusch, 2004, 2008) is that consumers co-create the value they derive from service encounters. In practice, however, dysfunctional consumer behaviour can obstruct value co-creation. Extant research has not yet investigated consumers’ defective co-creation behaviour in highly relational services, such as professional services, that are heavily reliant on co-creation. Design/methodology/approach To investigate defective co-creation in professional services, 164 critical incidents were collected from 38 health-care and financial service providers using the critical incident technique within semi-structured, in-depth interviews. Thematic coding was used to identify emergent themes and patterns of consumer behaviour. Findings Thematic coding resulted in a comprehensive typology of consumers’ defective co-creation behaviour that both confirms the prevalence of previously identified dysfunctional behaviours (e.g. verbal abuse and physical aggression) and identifies two new forms of consumer misbehaviour: underparticipation and overparticipation. Further, these behaviours can vary, escalate and co-occur during service encounters. Originality/value Both underparticipation and overparticipation are newly identified forms of defective co-creation that need to be examined within the broader framework of service-dominant logic (SDL).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perceived impaired control over alcohol use is a key cognitive construct in alcohol dependence that has been related prospectively to treatment outcome and may mediate the risk for problem drinking conveyed by impulsivity in non-dependent drinkers. The aim of the current study was to investigate whether perceived impaired control may mediate the association between impulsivity-related measures (derived from the Short-form Eysenck Personality Questionnaire-Revised) and alcohol-dependence severity in alcohol-dependent drinkers. Furthermore, the extent to which this hypothesized relationship was moderated by genetic risk (Taq1A polymorphism in the DRD2/ANKK1 gene cluster) and verbal fluency as an indicator of executive cognitive ability (Controlled Oral Word Association Test) was also examined. A sample of 143 alcohol-dependent inpatients provided an extensive clinical history of their alcohol use, gave 10ml of blood for DNA analysis, and completed self-report measures relating to impulsivity, impaired control and severity of dependence. As hypothesized, perceived impaired control (partially) mediated the association between impulsivity-related measures and alcohol-dependence severity. This relationship was not moderated by the DRD2/ANKK1 polymorphism or verbal fluency. These results suggest that, in alcohol dependence, perceived impaired control is a cognitive mediator of impulsivity-related constructs that may be unaffected by DRD2/ANKK1 and neurocognitive processes underlying the retrieval of verbal information

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rind and Tromovitch (2007) raised four concerns relating to our article (Najman, Dunne, Purdie, Boyle, & Coxeter, 2005. Archives of Sexual Behavior, 34, 517-526.) which suggested a causal association between childhood sexual abuse (CSA) and adult sexual dysfunction. We consider each of these concerns: magnitude of effect, cause and effect, confounding, and measurement error. We suggest that, while the concerns they raise represent legitimate reservations about the validity of our findings, on balance the available evidence indicates an association between CSA and sexual dysfunction that is of "moderate" magnitude, probably causal, and unlikely to be a consequence of confounding or measurement error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic exocrine dysfunction has been frequently recorded in protein-energy malnutrition in underdeveloped countries. In addition, the pancreas requires optimal nutrition for enzyme synthesis and potentially correctable pancreatic enzyme insufficiency may play a role in the continuation of protein-energy malnutrition. This problem has not been previously evaluated in Australian Aborigines. We have applied a screening test for pancreatic dysfunction (human immunoreactive trypsinogen [IRT] assay) to the study of 398 infants (6-36 months) admitted to the Alice Springs Hospital over a 20-month period. All infants were assessed by anthropometric measures and were assigned to to three nutritional groups (normal, moderate or severely malnourished) and two growth groups (stunted or not stunted). Of the 198 infants who had at least a single serum cationic trypsinogen measurement taken, normal values for serum IRT (with confidence limits) were obtained from 57 children, who were normally nourished. IRT levels were significantly correlated with the degree of underweight but there was no correlation with the degree of stunting or age. Mean IRT levels for the moderate and severely underweight groups were significantly greater than the mean for the normal group (P < 0.01). Seventeen children (8.6%) had trypsinogen levels in excess of the 95th percentile for the normally nourished group, reflecting acinar cell damage or ductal obstruction. We conclude that pancreatic dysfunction may be a common and important overlooked factor contributing to ongoing malnutrition and diseases in malnourished Australian Aboriginal children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated serum cationic trypsinogen as a marker of exocrine pancreatic function in children without cystic fibrosis. The ability of this test to determine steatorrhoea of pancreatic origin, and its relationship to a wide range of exocrine pancreatic function were assessed. Serum trypsinogen was measured in 32 children with steatorrhoea, 10 with pancreatic and 22 with non-pancreatic causes. In patients with pancreatic steatorrhoea, serum cationic trypsinogen was 4·9±4·9 μg/l (mean ±SD), significantly below values in patients with non-pancreatic steatorrhoea (47·0±22·1 μg/l, p<0·001) and 50 control subjects (31·4±7·4 μg/l, p<0·001). Serum cationic trypsinogen values in patients with pancreatic steatorrhoea all fell below the lower limit of our control range and below all values for patients with non-pancreatic steatorrhoea. Serum cationic trypsinogen was also evaluated against pancreatic trypsin output in 47 patients (range 0·2-17·0 yr) who underwent a hormonal pancreatic stimulation test. In 17 patients, serum cationic trypsinogen was low (<-2SD or 16·6 μg/l), and associated with greatly impaired pancreatic trypsin output, ranging from 0-8% of mean normal trypsin output. Five of these 17 patients did not have steatorrhoea. In 30 patients with normal or raised serum cationic trypsinogen (≥16·6 μg/l), pancreatic trypsin output ranged from 15-183% of mean normal values. In conclusion, low serum cationic trypsinogen suggests severely impaired exocrine pancreatic function, with sensitivity extending above the steatorrhoeic threshold. In the presence of steatorrhoea, low serum cationic trypsinogen indicates a pancreatic aetiology. Normal serum cationic trypsinogen, however, does not exclude impaired pancreatic function, above the steatorrhoeic threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Head and neck cancer is a debilitating disease. Not only can the primary tumour cause painful swallowing and speech difficulties, the treatments required to manage it can impact on neck and shoulder musculoskeletal function. In particular, those patients who undergo neck dissection surgery to remove lymph nodes from the neck can acquire accessory nerve injury during the procedure and a resultant loss of shoulder/neck motion, strength and function. Despite changes to surgical techniques that can protect the nerve, patients still report problems post-operatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drugs and surgical techniques may have harmful renal effects during the perioperative period. Traditional biomarkers are often insensitive to minor renal changes, but novel biomarkers may more accurately detect disturbances in glomerular and tubular function and integrity. The purpose of this study was first, to evaluate the renal effects of ketorolac and clonidine during inhalation anesthesia with sevoflurane and isoflurane, and secondly, to evaluate the effect of tobacco smoking on the production of inorganic fluoride (F-) following enflurane and sevoflurane anesthesia as well as to determine the effect of F- on renal function and cellular integrity in surgical patients. A total of 143 patients undergoing either conventional (n = 75) or endoscopic (n = 68) inpatient surgery were enrolled in four studies. The ketorolac and clonidine studies were prospective, randomized, placebo controlled and double-blinded, while the cigarette smoking studies were prospective cohort studies with two parallel groups. As a sign of proximal tubular deterioration, a similar transient increase in urine N-acetyl-beta-D-glucosaminidase/creatinine (U-NAG/crea) was noted in both the ketorolac group and in the controls (baseline vs. at two hours of anesthesia, p = 0.015) with a 3.3 minimum alveolar concentration hour sevoflurane anesthesia. Uncorrelated U-NAG increased above the maximum concentration measured from healthy volunteers (6.1 units/l) in 5/15 patients with ketorolac and in none of the controls (p = 0.042). As a sign of proximal tubular deterioration, U-glutathione transferase-alpha/crea (U-GST-alpha/crea) increased in both groups at two hours after anesthesia but a more significant increase was noted in the patients with ketorolac. U-GST-alpha/crea increased above the maximum ratio measured from healthy volunteers in 7/15 patients with ketorolac and in 3/15 controls. Clonidine diminished the activation of the renin-angiotensin aldosterone system during pneumoperitoneum; urine output was better preserved in the patients treated with clonidine (1/15 patients developed oliguria) than in the controls (8/15 developed oliguria (p=0.005)). Most patients with pneumoperitoneum and isoflurane anesthesia developed a transient proximal tubular deterioration, as U-NAG increased above 6.1 units/L in 11/15 patients with clonidine and in 7/15 controls. In the patients receiving clonidine treatment, the median of U-NAG/crea was higher than in the controls at 60 minutes of pneumoperitoneum (p = 0.01), suggesting that clonidine seems to worsen proximal tubular deterioration. Smoking induced the metabolism of enflurane, but the renal function remained intact in both the smokers and the non-smokers with enflurane anesthesia. On the contrary, smoking did not induce sevoflurane metabolism, but glomerular function decreased in 4/25 non-smokers and in 7/25 smokers with sevoflurane anesthesia. All five patients with S-F- ≥ 40 micromol/L, but only 6/45 with S-F- less than 40 micromol/L (p = 0.001), developed a S-tumor associated trypsin inhibitor concentration above 3 nmol/L as a sign of glomerular dysfunction. As a sign of proximal tubulus deterioration, U-beta 2-microglobulin increased in 2/5 patients with S-F- over 40 micromol/L compared to 2/45 patients with the highest S-F- less than 40 micromol/L (p = 0.005). To conclude, sevoflurane anesthesia may cause a transient proximal tubular deterioration which may be worsened by a co-administration of ketorolac. Clonidine premedication prevents the activation of the renin-angiotensin aldosterone system and preserves normal urine output, but may be harmful for proximal tubules during pneumoperitoneum. Smoking induces the metabolism of enflurane but not that of sevoflurane. Serum F- of 40 micromol/L or higher may induce glomerular dysfunction and proximal tubulus deterioration in patients with sevoflurane anesthesia. The novel renal biomarkers warrant further studies in order to establish reference values for surgical patients having inhalation anesthesia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternative pathway (AP) of complement can be activated on any surface, self or non-self. In atypical hemolytic uremic syndrome (aHUS) the AP regulation on self surfaces is insufficient and leads to complement attack against self-cells resulting usually in end-stage renal disease. Factor H (FH) is one of the key regulators of AP activation on the self surfaces. The domains 19 and 20 (FH19-20) are critical for the ability of FH to discriminate between C3b-opsonized self and non-self surfaces and are a hot-spot for mutations that have been described from aHUS patients. FH19-20 contains binding sites for both the C3d part of C3b and self surface polyanions that are needed for efficient C3b inactivation. To study the dysfunction of FH19-20, crystallographic structures of FH19-20 and FH19-20 in complex with C3d (FH19-20:C3d) were solved and aHUS-associated and structurally interesting point mutations were induced to FH19-20. Functional defects caused by these mutations were studied by analyzing binding of the FH19-20 mutant proteins to C3d, C3b, heparin, and mouse glomerular endothelial cells (mGEnCs). The results revealed two independent binding interfaces between FH19-20 and C3d - the FH19 site and the FH20 site. Superimposition of the FH19-20:C3d complex on the previously published C3b and FH1-4:C3b structures showed that the FH20 site on C3d is partially occluded, but the FH19 site is fully available. Furthermore, binding of FH19-20 via the FH19 site to C3b did not block binding of the functionally important FH1-4 domains and kept the FH20 site free to bind heparin or an additional C3d. Binding assays were used to show that FH20 domain can bind to heparin while FH19-20 is bound to C3b via the FH19 site, and that both the FH19 site and FH20 are necessary for recognition of non-activator surfaces. Simultaneous binding of FH19 site to C3b and FH20 to anionic self structures are the key interactions in self-surface recognition by FH and thereby enhanced avidity of FH explains how AP discriminates between self and non-self. The aHUS-associated mutations on FH19-20 were found to disrupt binding of the FH19 or FH20 site to C3d/C3b, or to disrupt binding of FH20 to heparin or mGEnC. Any of these dysfunctions leads to loss of FH avidity to C3b bearing self surfaces explaining the molecular pathogenesis of the aHUS-cases where mutations are found within FH19-20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug induced liver injury is one of the frequent reasons for the drug removal from the market. During the recent years there has been a pressure to develop more cost efficient, faster and easier ways to investigate drug-induced toxicity in order to recognize hepatotoxic drugs in the earlier phases of drug development. High Content Screening (HCS) instrument is an automated microscope equipped with image analysis software. It makes the image analysis faster and decreases the risk for an error caused by a person by analyzing the images always in the same way. Because the amount of drug and time needed in the analysis are smaller and multiple parameters can be analyzed from the same cells, the method should be more sensitive, effective and cheaper than the conventional assays in cytotoxicity testing. Liver cells are rich in mitochondria and many drugs target their toxicity to hepatocyte mitochondria. Mitochondria produce the majority of the ATP in the cell through oxidative phosphorylation. They maintain biochemical homeostasis in the cell and participate in cell death. Mitochondria is divided into two compartments by inner and outer mitochondrial membranes. The oxidative phosphorylation happens in the inner mitochondrial membrane. A part of the respiratory chain, a protein called cytochrome c, activates caspase cascades when released. This leads to apoptosis. The aim of this study was to implement, optimize and compare mitochondrial toxicity HCS assays in live cells and fixed cells in two cellular models: human HepG2 hepatoma cell line and rat primary hepatocytes. Three different hepato- and mitochondriatoxic drugs (staurosporine, rotenone and tolcapone) were used. Cells were treated with the drugs, incubated with the fluorescent probes and then the images were analyzed using Cellomics ArrayScan VTI reader. Finally the results obtained after optimizing methods were compared to each other and to the results of the conventional cytotoxicity assays, ATP and LDH measurements. After optimization the live cell method and rat primary hepatocytes were selected to be used in the experiments. Staurosporine was the most toxic of the three drugs and caused most damage to the cells most quickly. Rotenone was not that toxic, but the results were more reproducible and thus it would serve as a good positive control in the screening. Tolcapone was the least toxic. So far the conventional analysis of cytotoxicity worked better than the HCS methods. More optimization needs to be done to get the HCS method more sensitive. This was not possible in this study due to time limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinsons disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with omitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.