922 resultados para Dynamic manufacturing networks
Resumo:
This doctoral thesis unfolds into a collection of three distinct articles that share an interest in supply firms, or “peripheral firms”. The three studies offer a novel theoretical perspective that I call the peripheral view of manufacturing networks. Building on the relational view literature, this new perspective identifies the supplier-based theoretical standpoint to analyze and explain the antecedents of relational rents in manufacturing networks. The first article, the namesake of the dissertation, is a theoretical contribution that explains the foundations of the “peripheral view of manufacturing networks”. The second article “Framing The Strategic Peripheries: A Novel Typology of Suppliers” is an empirical study with the aim to offer an interpretation of peripheries’ characteristics and dynamics. The third article, “What is Behind Absorptive Capacity? Dispelling the Opacity of R&D” presents an example of general theory development by using data from peripheral firms.
Resumo:
"Serial no. 100-74."
Resumo:
We report for the first time on the limitations in the operational power range of network traffic in the presence of heterogeneous 28-Gbaud polarization-multiplexed quadrature amplitude modulation (PM-mQAM) channels in a nine-channel dynamic optical mesh network. In particular, we demonstrate that transponders which autonomously select a modulation order and launch power to optimize their own performance will have a severe impact on copropagating network traffic. Our results also suggest that altruistic transponder operation may offer even lower penalties than fixed launch power operation.
Resumo:
Context/Motivation - Different modeling techniques have been used to model requirements and decision-making of self-adaptive systems (SASs). Specifically, goal models have been prolific in supporting decision-making depending on partial and total fulfilment of functional (goals) and non-functional requirements (softgoals). Different goalrealization strategies can have different effects on softgoals which are specified with weighted contribution-links. The final decision about what strategy to use is based, among other reasons, on a utility function that takes into account the weighted sum of the different effects on softgoals. Questions/Problems - One of the main challenges about decisionmaking in self-adaptive systems is to deal with uncertainty during runtime. New techniques are needed to systematically revise the current model when empirical evidence becomes available from the deployment. Principal ideas/results - In this paper we enrich the decision-making supported by goal models by using Dynamic Decision Networks (DDNs). Goal realization strategies and their impact on softgoals have a correspondence with decision alternatives and conditional probabilities and expected utilities in the DDNs respectively. Our novel approach allows the specification of preferences over the softgoals and supports reasoning about partial satisfaction of softgoals using probabilities. We report results of the application of the approach on two different cases. Our early results suggest the decision-making process of SASs can be improved by using DDNs. © 2013 Springer-Verlag.
Resumo:
Bayesian decision theory is increasingly applied to support decision-making processes under environmental variability and uncertainty. Researchers from application areas like psychology and biomedicine have applied these techniques successfully. However, in the area of software engineering and speci?cally in the area of self-adaptive systems (SASs), little progress has been made in the application of Bayesian decision theory. We believe that techniques based on Bayesian Networks (BNs) are useful for systems that dynamically adapt themselves at runtime to a changing environment, which is usually uncertain. In this paper, we discuss the case for the use of BNs, speci?cally Dynamic Decision Networks (DDNs), to support the decision-making of self-adaptive systems. We present how such a probabilistic model can be used to support the decision making in SASs and justify its applicability. We have applied our DDN-based approach to the case of an adaptive remote data mirroring system. We discuss results, implications and potential bene?ts of the DDN to enhance the development and operation of self-adaptive systems, by providing mechanisms to cope with uncertainty and automatically make the best decision.
Resumo:
Technology is a key part of organisational knowledge and gives its owners their distinctive capabilities and competitive advantages. However, to best use these assets technology often needs to be transferred and shared with others through a form of technology collaboration. This raises the important question of how technology should be valued when it is being transferred. Technology valuation has become a critical issue in most transfer transactions. Transfer arrangements and terms of payment have a significant effect on the generation and sharing of joint benefits in commercial, technical and strategic aspects. In this paper the concept of “owner's value” is explored by highlighting its structure and components and assessing the importance of factors affecting value. The influence on technology valuation of the transfer arrangement, the associated terms of payment and the interaction between the shared benefits, cost and risks are discussed.
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.
Resumo:
Nowadays, the consumption of goods and services on the Internet are increasing in a constant motion. Small and Medium Enterprises (SMEs) mostly from the traditional industry sectors are usually make business in weak and fragile market sectors, where customized products and services prevail. To survive and compete in the actual markets they have to readjust their business strategies by creating new manufacturing processes and establishing new business networks through new technological approaches. In order to compete with big enterprises, these partnerships aim the sharing of resources, knowledge and strategies to boost the sector’s business consolidation through the creation of dynamic manufacturing networks. To facilitate such demand, it is proposed the development of a centralized information system, which allows enterprises to select and create dynamic manufacturing networks that would have the capability to monitor all the manufacturing process, including the assembly, packaging and distribution phases. Even the networking partners that come from the same area have multi and heterogeneous representations of the same knowledge, denoting their own view of the domain. Thus, different conceptual, semantic, and consequently, diverse lexically knowledge representations may occur in the network, causing non-transparent sharing of information and interoperability inconsistencies. The creation of a framework supported by a tool that in a flexible way would enable the identification, classification and resolution of such semantic heterogeneities is required. This tool will support the network in the semantic mapping establishments, to facilitate the various enterprises information systems integration.
Resumo:
A novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS), Case-based Reasoning (CBR), and Bio-Inspired Optimization Techniques (BIT) will be described. AC has emerged as a paradigm aiming at incorporating applications with a management structure similar to the central nervous system. The main intentions are to improve resource utilization and service quality. In this paper we envisage the use of MAS paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with AC properties, in order to reduce the complexity of managing manufacturing systems and human interference. The proposed CBR based Intelligent Scheduling System was evaluated under different dynamic manufacturing scenarios.
Resumo:
As the complexity of markets and the dynamicity of systems evolve, the need for interoperable systems capable of strengthening enterprise communication effectiveness increases. This is particularly significant when it comes to collaborative enterprise networks, like manufacturing supply chains, where several companies work, communicate, and depend on each other, in order to achieve a specific goal. Once interoperability is achieved, that is once all network parties are able to communicate with and understand each other, organisations are able to exchange information along a stable environment that follows agreed laws. However, as markets adapt to new requirements and demands, an evolutionary behaviour is triggered giving space to interoperability problems, thus disrupting the sustainability of interoperability and raising the need to develop monitoring activities capable of detecting and preventing unexpected behaviour. This work seeks to contribute to the development of monitoring techniques for interoperable SOA-based enterprise networks. It focuses on the automatic detection of harmonisation breaking events during real-time communications, and strives to develop and propose a methodological approach to handle these disruptions with minimal or no human intervention, hence providing existing service-based networks with the ability to detect and promptly react to interoperability issues.
Resumo:
This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.
Resumo:
Bit performance prediction has been a challenging problem for the petroleum industry. It is essential in cost reduction associated with well planning and drilling performance prediction, especially when rigs leasing rates tend to follow the projects-demand and barrel-price rises. A methodology to model and predict one of the drilling bit performance evaluator, the Rate of Penetration (ROP), is presented herein. As the parameters affecting the ROP are complex and their relationship not easily modeled, the application of a Neural Network is suggested. In the present work, a dynamic neural network, based on the Auto-Regressive with Extra Input Signals model, or ARX model, is used to approach the ROP modeling problem. The network was applied to a real oil offshore field data set, consisted of information from seven wells drilled with an equal-diameter bit.