976 resultados para Dynamic Traffic Assignment
Resumo:
This paper is the result of real-scale physical modeling study designed to simulate the load-deformation characteristics of railroad foundation systems that include the railroad ties, the ballast, and the sub-base layers of a railroad embankment. The study presents comparisons of the application of dynamic loads of 100kN on the rails, and the resulting deformations during a 500,000 cycle testing period for three rail support systems; wood, concrete and steel. The results show that the deformation curve has an exponential shape, with the larger portion of the deformation occurring during the first 50,000 load cycles followed by a tendency to stabilize between 100,000 to 500,000 cycles. These results indicate that the critical phase of deformations of a new railroad is within the first 50,000 cycles of loading, and after that, it slowly attenuates as it approaches a stable value. The paper also presents empirically derived formulations for the estimation of the deformations of the rail supports as a result of rail traffic.
Resumo:
The emergence of wavelength-division multiplexing (WDM) technology provides the capability for increasing the bandwidth of synchronous optical network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add–drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom the traffic, and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently. Moreover, the traffic pattern of the optical network changes from time to time. How to develop dynamic reconfiguration algorithms for traffic grooming is an important issue. In this paper, two cases (best fit and full fit) for handling reconfigurable SONET over WDM networks are proposed. For each approach, an integer linear programming model and heuristic algorithms (TS-1 and TS-2, based on the tabu search method) are given. The results demonstrate that the TS-1 algorithm can yield better solutions but has a greater running time than the greedy algorithm for the best fit case. For the full fit case, the tabu search heuristic yields competitive results compared with an earlier simulated annealing based method and it is more stable for the dynamic case.
Resumo:
Traffic grooming in optical WDM mesh networks is a two-layer routing problem to effectively pack low-rate connections onto high-rate lightpaths, which, in turn, are established on wavelength links. In this work, we employ the rerouting approach to improve the network throughput under the dynamic traffic model. We propose two rerouting schemes, rerouting at lightpath level (RRAL) and rerouting at connection level (RRAC). A qualitative comparison is made between RRAL and RRAC. We also propose the critical-wavelength-avoiding one-lightpath-limited (CWA-1L) and critical-lightpath-avoiding one-connection-limited (CLA-1C) rerouting heuristics, which are based on the two rerouting schemes respectively. Simulation results show that rerouting reduces the connection blocking probability significantly.
Resumo:
The emergence of Wavelength Division Multiplexing (WDM) technology provides the capability for increasing the bandwidth of Synchronous Optical Network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add-drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom in the traffic and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently.
Resumo:
Transportation Department, Washington, D.C.
Resumo:
Cover title.
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
This dissertation aims to improve the performance of existing assignment-based dynamic origin-destination (O-D) matrix estimation models to successfully apply Intelligent Transportation Systems (ITS) strategies for the purposes of traffic congestion relief and dynamic traffic assignment (DTA) in transportation network modeling. The methodology framework has two advantages over the existing assignment-based dynamic O-D matrix estimation models. First, it combines an initial O-D estimation model into the estimation process to provide a high confidence level of initial input for the dynamic O-D estimation model, which has the potential to improve the final estimation results and reduce the associated computation time. Second, the proposed methodology framework can automatically convert traffic volume deviation to traffic density deviation in the objective function under congested traffic conditions. Traffic density is a better indicator for traffic demand than traffic volume under congested traffic condition, thus the conversion can contribute to improving the estimation performance. The proposed method indicates a better performance than a typical assignment-based estimation model (Zhou et al., 2003) in several case studies. In the case study for I-95 in Miami-Dade County, Florida, the proposed method produces a good result in seven iterations, with a root mean square percentage error (RMSPE) of 0.010 for traffic volume and a RMSPE of 0.283 for speed. In contrast, Zhou's model requires 50 iterations to obtain a RMSPE of 0.023 for volume and a RMSPE of 0.285 for speed. In the case study for Jacksonville, Florida, the proposed method reaches a convergent solution in 16 iterations with a RMSPE of 0.045 for volume and a RMSPE of 0.110 for speed, while Zhou's model needs 10 iterations to obtain the best solution, with a RMSPE of 0.168 for volume and a RMSPE of 0.179 for speed. The successful application of the proposed methodology framework to real road networks demonstrates its ability to provide results both with satisfactory accuracy and within a reasonable time, thus establishing its potential usefulness to support dynamic traffic assignment modeling, ITS systems, and other strategies.
Resumo:
The standard highway assignment model in the Florida Standard Urban Transportation Modeling Structure (FSUTMS) is based on the equilibrium traffic assignment method. This method involves running several iterations of all-or-nothing capacity-restraint assignment with an adjustment of travel time to reflect delays encountered in the associated iteration. The iterative link time adjustment process is accomplished through the Bureau of Public Roads (BPR) volume-delay equation. Since FSUTMS' traffic assignment procedure outputs daily volumes, and the input capacities are given in hourly volumes, it is necessary to convert the hourly capacities to their daily equivalents when computing the volume-to-capacity ratios used in the BPR function. The conversion is accomplished by dividing the hourly capacity by a factor called the peak-to-daily ratio, or referred to as CONFAC in FSUTMS. The ratio is computed as the highest hourly volume of a day divided by the corresponding total daily volume. ^ While several studies have indicated that CONFAC is a decreasing function of the level of congestion, a constant value is used for each facility type in the current version of FSUTMS. This ignores the different congestion level associated with each roadway and is believed to be one of the culprits of traffic assignment errors. Traffic counts data from across the state of Florida were used to calibrate CONFACs as a function of a congestion measure using the weighted least squares method. The calibrated functions were then implemented in FSUTMS through a procedure that takes advantage of the iterative nature of FSUTMS' equilibrium assignment method. ^ The assignment results based on constant and variable CONFACs were then compared against the ground counts for three selected networks. It was found that the accuracy from the two assignments was not significantly different, that the hypothesized improvement in assignment results from the variable CONFAC model was not empirically evident. It was recognized that many other factors beyond the scope and control of this study could contribute to this finding. It was recommended that further studies focus on the use of the variable CONFAC model with recalibrated parameters for the BPR function and/or with other forms of volume-delay functions. ^
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
In a model commonly used in dynamic traffic assignment the link travel time for a vehicle entering a link at time t is taken as a function of the number of vehicles on the link at time t. In an alternative recently introduced model, the travel time for a vehicle entering a link at time t is taken as a function of an estimate of the flow in the immediate neighbourhood of the vehicle, averaged over the time the vehicle is traversing the link. Here we compare the solutions obtained from these two models when applied to various inflow profiles. We also divide the link into segments, apply each model sequentially to the segments and again compare the results. As the number of segments is increased, the discretisation refined to the continuous limit, the solutions from the two models converge to the same solution, which is the solution of the Lighthill, Whitham, Richards (LWR) model for traffic flow. We illustrate the results for different travel time functions and patterns of inflows to the link. In the numerical examples the solutions from the second of the two models are closer to the limit solutions. We also show that the models converge even when the link segments are not homogeneous, and introduce a correction scheme in the second model to compensate for an approximation error, hence improving the approximation to the LWR model.
Resumo:
Daily life in urban centers has led to increasing and more demanding freight requirements. Manufacturers, retailers and other urban agents have thus tended towards more frequent and smaller deliveries, resulting in a growing use of light freight vehicles (<3.5 ton). This paper characterizes and analyzes urban freight distribution in order to generate new ways of understanding the phenomenon. Based on a case study of two different-sized Spanish cities using data from GPS, a vehicle observation survey and complementary driver's interviews, the authors propose a categorization of urban freight distribution. The results confirm GPS as a useful tool that allows the integration of dynamic traffic assignment data and diverse traffic operation patterns during different day periods, thereby improving delivery performance.
Resumo:
Dense deployments of wireless local area networks (WLANs) are fast becoming a permanent feature of all developed cities around the world. While this increases capacity and coverage, the problem of increased interference, which is exacerbated by the limited number of channels available, can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. In an earlier work, an asynchronous, distributed and dynamic channel assignment scheme has been proposed that (1) is simple to implement, (2) does not require any knowledge of the throughput function, and (3) allows asynchronous channel switching by each access point (AP). In this paper, we present extensive performance evaluation of this scheme when it is deployed in the more practical non-uniform and dynamic topology scenarios. Specifically, we investigate its effectiveness (1) when APs are deployed in a nonuniform fashion resulting in some APs suffering from higher levels of interference than others and (2) when APs are effectively switched `on/off' due to the availability/lack of traffic at different times, which creates a dynamically changing network topology. Simulation results based on actual WLAN topologies show that robust performance gains over other channel assignment schemes can still be achieved even in these realistic scenarios.
Resumo:
This paper reviews the main development of approaches to modelling urban public transit users’ route choice behaviour from 1960s to the present. The approaches reviewed include the early heuristic studies on finding the least cost transit route and all-or-nothing transit assignment, the bus common line problem and corresponding network representation methods, the disaggregate discrete choice models which are based on random utility maximization assumptions, the deterministic use equilibrium and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models using either frequency or schedule based network formulation. In addition to reviewing past outcomes, this paper also gives an outlook into the possible future directions of modelling transit users’ route choice behaviour. Based on the comparison with the development of models for motorists’ route choice and traffic assignment problems in an urban road area, this paper points out that it is rewarding for transit route choice research to draw inspiration from the intellectual outcomes out of the road area. Particularly, in light of the recent advancement of modelling motorists’ complex road route choice behaviour, this paper advocates that the modelling practice of transit users’ route choice should further explore the complexities of the problem.
Resumo:
Public transport is one of the key promoters of sustainable urban transport. To encourage and increase public transport patronage it is important to investigate the route choice behaviours of urban public transit users. This chapter reviews the main developments of modelling urban public transit users’ route choice behaviours in a historical perspective, from the 1960s to the present time. The approaches re- viewed for this study include the early heuristic studies on finding the least-cost transit route and all-or- nothing transit assignment, the bus common lines problem, the disaggregate discrete choice models, the deterministic and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models. This chapter also provides an outlook for the future directions of modelling transit users’ route choice behaviours. Through the comparison with the development of models for motorists’ route choice and traffic assignment problems, this chapter advocates that transit route choice research should draw inspiration from the research outcomes from the road area, and that the modelling practice of transit users’ route choice should further explore the behavioural complexities.