895 resultados para Dye removal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generation of effluent from the finishing process in textile industry is a serious environmental problem and turned into an object of study in several scientific papers. Contamination with dyes and the presences of substances that are toxic to the environment characterize this difficult treatment effluent. Several processes have already been evaluated to remove and even degrade such pollutants are examples: coagulation-flocculation, biological treatment and advanced oxidative processes, but not yet sufficient to enable the recovery of dye or at least of the recovery agent. An alternative to this problem is the cloud point extraction that involves the application of nonionic surfactants at temperatures above the cloud point, making the water a weak solvent to the surfactant, providing the agglomeration of those molecules around the dyes molecules by affinity with the organic phase. After that, the formation of two phases occurred: the diluted one, poor in dye and surfactant, and the other one, coacervate, with higher concentrations of dye and surfactants than the other one. The later use of the coacervate as a dye and surfactant recycle shows the technical and economic viability of this process. In this paper, the cloud point extraction is used to remove the dye Reactive Blue from the water, using nonionic surfactant nonyl phenol with 9,5 etoxilations. The aim is to solubilize the dye molecules in surfactant, varying the concentration and temperature to study its effects. Evaluating the dye concentration in dilute phase after extraction, it is possible to analyze thermodynamic variables, build Langmuir isotherms, determine the behavior of the coacervate volume for a surfactant concentration and temperature, the distribution coefficient and the dye removal efficiency. The concentration of surfactant proved itself to be crucial to the success of the treatment. The results of removal efficiency reached values of 91,38%, 90,69%, 89,58%, 87,22% and 84,18% to temperatures of 65,0, 67,5, 70,0, 72,5 and 75,0°C, respectively, showing that the cloud point extraction is an efficient alternative for the treatment of wastewater containing Reactive Blue

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adsorption of Reactive Blue 19 dye onto activated red mud was investigated. Red mud was treated with hydrogen peroxide (LVQ) and heated at both 400 °C (LVQ400) and 500 °C (LVQ500). These samples were characterized by pH, specific surface area, point of zero charge and mineralogical composition. Adsorption was found to be significantly dependent on solution pH, with acidic conditions proving to be the most favorable. The adsorption followed pseudo-second-order kinetics. The Langmuir isotherm was the most appropriate to describe the phenomenon of dye removal using LVQ, LVQ400 and LVQ500, with maximum adsorption capacity of 384.62, 357.14 and 454.54 mg g-1, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most primal ways of human work already known is the tessellation and ginning for the production of fabric and clothing - what used to be, back in those days, statement of power and status. The arrival of the Industrial Revolution - in the middle of the XVIII century at Britain - increased the textile industry production, and what used to be manufactured and hard to obtain, starts then to be produced in mechanical ways and large-scale. Despite all the boost given to the economy of an expanding capitalist market, it should be pointed out the consequences of this major industrialization, especially the environmental ones, more and more concerning nowadays. The emissions of waste - that sometimes could be toxic - in effluents can possibly contaminate the aquatic ecosystems, causing a huge damage to its fauna and flora, affecting therefore all the biodiversity, reaching inclusively the humans. To avoid these problems, a few strategies have been taking place in the attempt to eliminate - or at least reduce - the amount of dye found in the effluents, and as the textile industry constantly leaves waste, efficient methods - that present good results in a short period of time - with a low cost are needed. The present study will test the bioremoval capacity of yeast (Saccharomyces cerevisiae) in contact with dyes in a fix concentration, diluted in water with three different pH values. The tests will be done duplicate, and after the concentration analyses - made by spectrophotometry - it will be analyzed which pH shows major efficiency in the dye removal and what is the influence of the biomass in this process

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Brazilian textile industry has been a highlight in the global economy. Connected with this high economic performance there is the water consumption and the generation of great volumes of wastewater which present high concentrations of dyes and chemical substances. One of the main techniques used in the treatment of textile effluents is adsorption, which has the activated carbon as the main adsorbent. Recently, studies have been developed to find alternative materials to activated carbon and exhibiting good adsorption capacity of dyes. The aim of this work is to study the potential of sawdust as adsorbent of low cost to remove the dye Direct Green 26. The results of this type of dye removal were obtained through the study of adsorption isotherms obtained by spectrophotometry in the UV-visible region analyzed by the Langmuir model. Finally, a comparison was made of these results with those of other adsorbents. Results showed that the average removal of dye, using sawdust, was 78.8% for an initial concentration of 500mg / L and the maximum adsorption capacity of 119mg / g. These results demonstrate the great potential of sawdust as an adsorbent for the dye Direct Green 26.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, carra sawdust pre-treated with formaldehyde was used to adsorb reactive red 239 (RR239). The effects of several experimental conditions, including the concentration of dye, sorbent dosage, temperature, ionic strength, stirring speed and solution pH, on the kinetics of the adsorption process have been studied, and the experimental data were fitted to pseudo-second-order model. A study of the intra-particle diffusion model indicates that the mechanism of dye adsorption using carra sawdust is rather complex and is most likely a combination of external mass transfer and intra-particle diffusion. The experimental data obtained at equilibrium were analyzed using the Langmuir and Freundlich isotherm models, and the results indicated that at this concentration range, both models can be applied for obtaining the equilibrium parameters. The maximum dye uptake obtained at 298 K was found to be 15.1 mg g(-1). In contrast to the usual systems, the reactive dye studied in the present work is strongly attached to the sawdust even after several washes with water, allowing it to be discarded as a solid waste.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a previous work, succinylated sugarcane bagasse (SCB 2) was prepared from sugarcane bagasse (B) using succinic anhydride as modifying agent. In this work the adsorption of cationic dyes onto SCB 2 from aqueous solutions was investigated. Methylene blue, MB, and gentian violet, GV, were selected as adsorbates. The capacity of SCB 2 to adsorb MB and GV from aqueous single dye solutions was evaluated at different contact times, pH, and initial adsorbent concentration. According to the obtained results, the adsorption processes could be described by the pseudo-second-order kinetic model. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacities for MB and GV onto SCB 2 were found to be 478.5 and 1273.2 mg/g, respectively. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anion clay hydrotalcite sorbents were prepared to investigate their adsorption capabilities in the removal of coloured organic substances from various aqueous systems. Anion clay hydrotalcite was found to be particularly effective at removing negatively charged species. Its excellent uptake levels of anionic species can be accounted for by its high surface area and anion exchange ability. That is, coloured substances can be adsorbed on the surface or enter the interlayer region of the clay by anion exchange. In the adsorption of Acid Blue 29 on the anion clay hydrotalcite, an equilibrium time of 1 h with dye removal exceeding 99% was obtained. The hydrotalcite was found to have an adsorption capacity marginally below that of commercial activated carbon. It should be noted that the spent sorbents can be regenerated easily by heating at 723 K to remove all adsorbed organics. The reused sorbents displayed greater adsorption capabilities than the newly prepared hydrotalcite. Hence, the anion clay hydrotalcite is easily recoverable and reusable such that it is a promising sorbent for environmental and purification purposes. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The textile sector is one of the main contributors to the generation of industrial wastewaters due to the use of large volumes of water, which has a high organic load content. In these, it is observed to the presence of dyes, surfactants, starch, alcohols, acetic acid and other constituents, from the various processing steps of the textiles. Hence, the treatment of textile wastewater becomes fundamental before releasing it into water bodies, where they can cause disastrous physical-chemical changes for the environment. Surfactants are substances widely used in separation processes and their use for treating textile wastewaters was evaluated in this research by applying the cloud point extraction and the ionic flocculation. In the cloud point extraction was used as surfactant nonylphenol with 9.5 ethoxylation degree to remove reactive dye. The process evaluation was performed in terms of temperature, surfactant and dye concentrations. The dye removal reached 91%. The ionic flocculation occurs due to the presence of calcium, which reacts with anionic surfactant to form insoluble surfactants capable of attracting the organic matter by adsorption. In this work the ionic flocculation using base soap was applied to the treatment of synthetic wastewater containing dyes belonging to three classes: direct, reactive, and disperse. It was evaluated by the influence of the following parameters: surfactant and electrolyte concentrations, stirring speed, equilibrium time, temperature, and pH. The flocculation of the surfactant was carried out in two ways: forming the floc in the effluent itself and forming the floc before mixing it to the effluent. Removal of reactive and direct dye, when the floc is formed into textile effluent was 97% and 87%, respectively. In the case where the floc is formed prior to adding it to the effluent, the removal to direct and disperse dye reached 92% and 87%, respectively. These results show the efficience of the evaluated processes for dye removal from textile wastewaters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we carried out the study of Eriochrome black T removal using expanded perlite modified orthophenanthroline by adsorption technique. The study of the adsorption process was performed by investigating the effect of the initial dye concentration, contact time and pH range of the solution (acidic and alkaline) in the adsorption process, for a so-called synthetic effluent (aqueous solution of black eriochrome T) and a real effluent (generated from the test for determining the water hardness, by complexation titration). The materials were characterized by Thermogravimetry / Differential Thermal Analysis (TG / DTA), absorption spectroscopy in the infrared (IR), X-ray Diffraction (XRD) and scanning electron microscopy (SEM). By analysis of XRD observed thinking on orthophenanthroline the modified expanded perlite. And by IR analysis showed an increase in intensity and a detailed enlargement of the absorption band related to the axial deformation of the OH bond of silanol groups of perlite (Si-OH). In the equilibration time of the study, in the evaluated time range (5-230 min) was not possible to observe the existence of a balance of time, probably attributed to the type of interaction between the Eriochrome black-T and the expanded perlite modified orthophenanthroline, being an interaction of surface origin. In the study effect of the initial concentration of the adsorbate in the case 2,0x10-4 mol / L natural pH (pH 5) gave the highest removal percentage value of eriochrome T black color with 63.74 % removal in 20 minutes of contact. In evaluating the effect of varying the pH of Eriochrome black T solution in the adsorption process, it was found that the more acidic the environment, the greater the percentage stain removal, being a result of acid-base interaction between the adsorbate and the adsorbent. In T Eriochrome black removal study in real effluent we used the optimized conditions by studying with synthetic sewage. The dye removal at pH 10, natural pH of the effluent was no significant reaching the maximum amount of color removal percentage of 8.12%, obtained already at pH 3 with maximum color removal 100.00% of color, once more proving that eriochrome black T and effectively interact better with the adsorbent at acid pH values (pH 5 or 3), and most efficiently at pH 3. thus one can mention that the perlite expanded (an amorphous aluminosilicate naturally acid) modified with orthophenanthroline (one Bronsted base) consists of a master and effective removal of coloring material in the acid-type aqueous solution, the conditions expressed in this study, can be applied as an adsorbent of this dye also mums real effluent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon materials are found versatile and applicable in wide range of applications. During the recent years research of carbon materials has focussed on the search of environmentally friendly, sustainable, renewable and low-cost starting material sources as well as simple cost-efficient synthesis techniques. As an alternative synthesis technique in the production of carbon materials hydrothermal carbonization (HTC) has shown a great potential. Depending on the application HTC can be performed as such or as a pretreatment technique. This technique allows synthesis of carbon materials i.e. hydrochars in closed vessel in the presence of water and self-generated pressure at relatively low temperatures (180-250 ˚C). As in many applications well developed porosity and heteroatom distribution are in a key role. Therefore in this study different techniques e.g. varying feedstock, templating and post-treatment in order to introduce these properties to the hydrochars structure were performed. Simple monosaccharides i.e. fructose or glucose and more complex compounds such as cellulose and sludge were performed as starting materials. Addition of secondary precursor e.g. thiophenecarboxaldehyde and ovalbumin was successfully exploited in order to alter heteroatom content. It was shown that well-developed porosity (SBET 550 m2/g) can be achieved via one-pot approach (i.e. exploitation of salt mixture) without conventionally used post-carbonization step. Nitrogen-enriched hydrochars indicated significant Pb(II) and Cr(VI) removal efficiency of 240 mg/g and 68 mg/g respectively. Sulphur addition into carbon network was not found to have enhancing effect on the adsorption of methylene blue or change acidity of the carbon material. However, these hydrochars were found to remove 99.9 % methylene blue and adsorption efficiency of these hydrochars remained over 90 % even after regeneration. In addition to water treatment application N-rich high temperature treated carbon materials were proven applicable as electrocatalyst and electrocatalyst support. Hydrothermal carbonization was shown to be workable technique for the production of carbon materials with variable physico-chemical properties and therefore hydrochars could be applied in several different applications e.g. as alternative low-cost adsorbent for pollutant removal from water.