919 resultados para Dwarf Galaxy Fornax Distribution Function Action Based


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using path integrals, we derive an exact expression-valid at all times t-for the distribution P(Q,t) of the heat fluctuations Q of a Brownian particle trapped in a stationary harmonic well. We find that P(Q, t) can be expressed in terms of a modified Bessel function of zeroth order that in the limit t > infinity exactly recovers the heat distribution function obtained recently by Imparato et al. Phys. Rev. E 76, 050101(R) (2007)] from the approximate solution to a Fokker-Planck equation. This long-time result is in very good agreement with experimental measurements carried out by the same group on the heat effects produced by single micron-sized polystyrene beads in a stationary optical trap. An earlier exact calculation of the heat distribution function of a trapped particle moving at a constant speed v was carried out by van Zon and Cohen Phys. Rev. E 69, 056121 (2004)]; however, this calculation does not provide an expression for P(Q, t) itself, but only its Fourier transform (which cannot be analytically inverted), nor can it be used to obtain P(Q, t) for the case v=0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the use of a Wigner distribution function approach for exploring the problem of extending the depth of field in a hybrid imaging system. The Wigner distribution function, in connection with the phase-space curve that formulates a joint phase-space description of an optical field, is employed as a tool to display and characterize the evolving behavior of the amplitude point spread function as a wave propagating along the optical axis. It provides a comprehensive exhibition of the characteristics for the hybrid imaging system in extending the depth of field from both wave optics and geometrical optics. We use it to analyze several well-known optical designs in extending the depth of field from a new viewpoint. The relationships between this approach and the earlier ambiguity function approach are also briefly investigated. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of the space-time Wigner distribution function (STWDF), we use the matrix formalism to study the propagation laws for the intensity moments of quasi-monochromatic and polychromatic pulsed paraxial beams. The advantages of this approach are reviewed. Also, a least-squares fitting method for interpreting the physical meaning of the effective curvature matrix is described by means of the STWDF. Then the concept is extended to the higher-order situation, and what me believe is a novel technique for characterizing the beam phase is presented. (C) 1999 Optical Society of America [S0740-3232(99)001009-1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By introducing the scattering probability of a subsurface defect (SSD) and statistical distribution functions of SSD radius, refractive index, and position, we derive an extended bidirectional reflectance distribution function (BRDF) from the Jones scattering matrix. This function is applicable to the calculation for comparison with measurement of polarized light-scattering resulting from a SSD. A numerical calculation of the extended BRDF for the case of p-polarized incident light was performed by means of the Monte Carlo method. Our numerical results indicate that the extended BRDF strongly depends on the light incidence angle, the light scattering angle, and the out-of-plane azimuth angle. We observe a 180 degrees symmetry with respect to the azimuth angle. We further investigate the influence of the SSD density, the substrate refractive index, and the statistical distributions of the SSD radius and refractive index on the extended BRDF. For transparent substrates, we also find the dependence of the extended BRDF on the SSD positions. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on an extensive analysis of the electroluminescence characteristics of InGaN-based LEDs with color-coded structure, i.e., with a triple quantum well structure in which each quantum well has a different indium content. The analysis is based on combined electroluminescence measurements and two-dimensional simulations, carried out at different current and temperature levels. Results indicate that (i) the efficiency of each of the quantum wells strongly depends on device operating conditions (current and temperature); (ii) at low current and temperature levels, only the quantum well closer to the p-side has a significant emission; (iii) emission from the other quantum wells is favored at high current levels. The role of carrier injection, hole mobility, carrier density and non-radiative recombination in determining the relative intensity of the quantum wells is discussed in the text. © 2013 The Japan Society of Applied Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usual application of the Lei-Ting balance equation method for treating electron transport problems makes use of a Fermi distribution function for the electron motion relative to the center of mass. It is pointed out that this presumes the existence of a moving frame of reference that is dynamically equivalent to the rest frame of reference, and this is only true for electrons with a constant effective mass. The method is thus inapplicable to problems where electrons governed by a general energy-band dispersion E(k) are important (such as in miniband conduction). It is demonstrated that this difficulty can be overcome by introducing a distribution function for a drifting electron gas by maximizing the entropy subject to a prescribed average drift velocity. The distribution function reduces directly to the usual Fermi distribution for electron motion relative to the center of mass in the special case of E(k)=($) over bar h(2)\k\(2)/2m*. This maximum entropy treatment of a drifting electron gas provides a physically more direct as well as a more general basis for the application of the balance equation method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallocene based polyethylenes were prepared by SMOPEC's "metallocene adduct" technology in a gas phase fluidized bed model reactor. The C-13-NMR spectra of ethylene/1-butene (S-34) and ethylene/1-hexene(S-43) copolymers were studied in a manner analogous to that established by Hsieh and Cheng. The comonomer sequence distributions of copolymer samples were obtained. The results show that these metallocene based copolymers contain a small amount of butene and hexene, and the EE and EEE sequences are dominant.