887 resultados para Duchenne muscular dystrophy
Resumo:
Objective: To assess the evolution of motor function in patients with Duchenne muscular dystrophy (DMD) treated with steroids (prednisolone or deflazacort) through the Motor Function Measure (MFM), which evaluates three dimensions of motor performance (D1, D2, D3). Methods: Thirty-three patients with DMD (22 ambulant, 6 non-ambulant and 5 who lost the capacity to walk during the period of the study) were assessed using the MFM scale six times over a period of 18 months. Results: All the motor functions remained stable for 14 months in all patients, except D1 for those who lost their walking ability. In ambulant patients, D2 (axial and proximal motor capacities) motor functions improved during six months; an improvement in D3 (distal motor capacity) was noted during the total follow-up. D1 (standing posture and transfers) and total score were useful to predict the loss of the ability to walk. Conclusions: The use of the MFM in DMD patients confirms the benefits of the steroid treatment for slowing the progression of the disease.
Resumo:
Background Duchenne muscular dystrophy (DMD) is a sex-linked inherited muscle disease characterized by a progressive loss in muscle strength and respiratory muscle involvement. After 12 years of age, lung function declines at a rate of 6 % to 10.7 % per year in patients with DMD. Steroid therapy has been proposed to delay the loss of motor function and also the respiratory involvement. Method In 21 patients with DMD aged between seven and 16 years, the forced vital capacity (FVC) and the forced expiratory volume in one second (FEV1) were evaluated at three different times during a period of two years. Results We observed in this period of evaluation the maintenance of the FVC and the FEV1 in this group of patients independently of chronological age, age at onset of steroid therapy, and walking capacity. Conclusion The steroid therapy has the potential to stabilize or delay the loss of lung function in DMD patients even if they are non-ambulant or older than 10 years, and in those in whom the medication was started after 7 years of age.
Resumo:
Dystrophin is a subsarcolemmal protein critical for the integrity of muscle fibers by linking the actin cytoskeleton to the extracellular matrix via the dystroglycan complex. It is reported that dystroglycans are also localized in the skin, at dermal-epidermal junction. Here we show that epidermal melanocytes express dystrophin at the interface with the basement membrane. The full-length muscle isoform mDp427 was clearly detectable in epidermis and in melanocyte cultures as assessed by RNA and western blot analysis. Dystrophin was absent in Duchenne Muscular Dystrophy (DMD) patients melanocytes, and the ultrastructural analysis revealed mitochondrial alterations, similar to those occurring in myoblasts from the same patients. Interestingly, mitochondrial dysfunction of DMD melanocytes reflected the alterations identified in dystrophin-deficient muscle cells. In fact, mitochondria of melanocytes from DMD patients accumulated tetramethylrhodamine methyl ester but, on the contrary of control donor, mitochondria of DMD patients readily depolarized upon the addition of oligomycin, suggesting either that they are maintaining the membrane potential at the expense of glycolytic ATP, or that they are affected by a latent dysfunction unmasked by inhibition of the ATP synthase. Melanocyte cultures can be easily obtained by conventional skin biopsies, less invasive procedure than muscular biopsy, so that they may represent an alternative cellular model to myoblast for studying and monitoring dystrophinopathies also in response to pharmacological treatments.
Resumo:
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.
Resumo:
Mutations in the dystrophin gene have long been recognised as a cause of mental retardation. However, for reasons that are unclear, some boys with dystrophin mutations do not show general cognitive deficits. To investigate the relationship between dystrophin mutations and cognition, the general intellectual abilities of a group of 25 boys with genetically confirmed Duchenne muscular dystrophy were evaluated. Furthermore, a subgroup underwent additional detailed neuropsychological assessment. The results showed a mean full scale intelligence quotient (IQ) of 88 (standard deviation 24). Patients performed very poorly on various neuropsychological tests, including arithmetics, digit span tests and verbal fluency. No simple relationship between dystrophin mutations and cognitive functioning could be detected. However, our analysis revealed that patients who lack the dystrophin isoform Dp140 have significantly greater cognitive problems.
Resumo:
Duchenne muscular dystrophy (DMD) is a progressive disease affecting skeletal and cardiac muscle, as well as bone. Long term disuse and glucocorticoid treatments cause progressive osteoporosis in DMD patients, leading to an increase in fracture incidence. Treatments for osteoporosis in these patients have not been widely explored. Parathyroid hormone (PTH), an anabolic treatment for post-menopausal osteoporosis, could benefit DMD patients by improving skeletal properties and reducing fracture risk. Other PTH analogues are not currently FDA approved to treat osteoporosis, but may have improved osteogenic effects compared to the human analogue. Black bear PTH is especially promising as an osteoporosis treatment for the DMD population. Black bears are unique models of bone maintenance during disuse, since during six months of inactivity (hibernation), they maintain skeletal properties, unlike other hibernators. Additionally, black bear PTH has been correlated to bone formation markers during hibernation, indicating it may be, at least in part, the mechanism by which bears maintain bone during disuse. Employing black bear PTH as a treatment for osteoporosis in DMD patients could greatly improve quality of life for these individuals, and reduce the pain and expense associated with frequent fractures.
Resumo:
Dilated cardiomyopathy is a serious and almost inevitable complication of Duchenne Muscular Dystrophy, a devastating and fatal disease of skeletal muscle resulting from the lack of functional dystrophin, a protein linking the cytoskeleton to the extracellular matrix. Ultimately, it leads to congestive heart failure and arrhythmias resulting from both cardiac muscle fibrosis and impaired function of the remaining cardiomyocytes. Here we summarize findings obtained in several laboratories, focusing on cellular mechanisms that result in degradation of cardiac functions in dystrophy. This article is part of a Special Issue entitled "Calcium Signaling in Heart".
Resumo:
Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations).
Resumo:
Duchenne muscular dystrophy (DMD) is an inherited muscle-wasting disease caused by the absence of a muscle cytoskeletal protein, dystrophin. We have previously shown that utrophin, the autosomal homologue of dystrophin, is able to compensate for the absence of dystrophin in a mouse model of DMD; we have therefore undertaken a detailed study of the transcriptional regulation of utrophin to identify means of effecting its up-regulation in DMD muscle. We have previously isolated a promoter element lying within the CpG island at the 5′ end of the gene and have shown it to be synaptically regulated in vivo. In this paper, we show that there is an alternative promoter lying within the large second intron of the utrophin gene, 50 kb 3′ to exon 2. The promoter is highly regulated and drives transcription of a widely expressed unique first exon that splices into a common full-length mRNA at exon 3. The two utrophin promoters are independently regulated, and we predict that they respond to discrete sets of cellular signals. These findings significantly contribute to understanding the molecular physiology of utrophin expression and are important because the promoter reported here provides an alternative target for transcriptional activation of utrophin in DMD muscle. This promoter does not contain synaptic regulatory elements and might, therefore, be a more suitable target for pharmacological manipulation than the previously described promoter.
Resumo:
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease with death usually occurring because of respiratory failure. Signs of early respiratory insufficiency are usually first detectable in sleep. Objective: To study the presentation of sleep-related breathing disorder (SRBD) in patients with DMD. Method:> A retrospective review of patients with DMD attending a tertiary paediatric sleep disorder clinic over a 5-year period. Symptoms, lung function and polysomnographic indices were reviewed. Results: A total of 34 patients with DMD were referred for respiratory assessment (1-15 years). Twenty-two (64%) reported sleep-related symptomatology. Forced vital capacity (FVC) was between 12 and 107% predicted (n = 29). Thirty-two progressed to have polysomnography of which 15 were normal studies (median age: 10 years) and 10 (31%) were diagnostic of obstructive sleep apnoea (OSA) (median age: 8 years). A total of 11 patients (32%) showed hypoventilation (median age: 13 years) during the 5-year period and non-invasive ventilation (NIV) was offered to them. The median FVC of this group was 27% predicted. There was a significant improvement in the apnoea/hypopnoea index (AHI) (mean difference = 11.31, 95% CI = 5.91-16.70, P = 0.001) following the institution of NIV. Conclusions: The prevalence of SRBD in DMD is significant. There is a bimodal presentation of SRBD, with OSA found in the first decade and hypoventilation more commonly seen at the beginning of the second decade. Polysomnography is recommended in children with symptoms of OSA, or at the stage of becoming wheelchair-bound. In patients with the early stages of respiratory failure, assessment with polysomnography-identified sleep hypoventilation and assisted in initiating NIV.
Resumo:
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.
Resumo:
This is the protocol for a review and there is no abstract. The objectives are as follows: To assess the effects of standing devices and orthoses on musculoskeletal impairments (such as pain, contracture, scoliosis development and bone density) in people with DMD, and secondarily to determine their effect on quality of life, participation in activities, and patient experience.
Resumo:
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, was studied in 19 patients with Xp21 disorders and in 25 individuals with non-Xp21 muscular dystrophy. Antibodies raised to seven different regions spanning most of the protein were used for immunocytochemistry. In all patients specific dystrophin staining anomalies were detected and correlated with clinical severity and also gene deletion. In patients with Becker muscular dystrophy (BMD) the anomalies detected ranged from inter- and intra-fibre variation in labelling intensity with the same antibody or several antibodies to general reduction in staining and discontinuous staining. In vitro evidence of abnormal dystrophin breakdown was observed reanalysing the muscle of patients, with BMD and not that of non-Xp21 dystrophies, after it has been stored for several months. A number of patients with DMD showed some staining but this did not represent a diagnostic problem. Based on the data presented, it was concluded that immunocytochemistry is a powerful technique in the prognostic diagnosis of Xp21 muscular dystrophies.