966 resultados para Dual energy X-ray absorptiometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the effect of age and disease on mineral distribution at the distal third of the tibia, bone mineral content (BMC) and bone mineral density (BMD) were measured at lumbar spine (spine), femoral neck (neck), and diaphysis (Dia) and distal epiphysis (Epi) of the tibia in 89 healthy control women of different age groups (20-29, n = 12; 30-39, n = 11; 40-44, n = 12; 45-49, n = 12; 50-54, n = 12; 55-59, n = 10; 60-69, n = 11; 70-79, n = 9), in 25 women with untreated vertebral osteoporosis (VOP), and in 19 women with primary hyperparathyroidism (PHPT) using dual-energy x-ray absorptiometry (DXA; Hologic QDR 1000 and standard spine software). A soft tissue simulator was used to compensate for heterogeneity of soft tissue thickness around the leg. Tibia was scanned over a length of 130 mm from the ankle joint, fibula being excluded from analysis. For BMC and BMD, 10 sections 13 mm each were analyzed separately and then pooled to define the epiphysis (Epi 13-52 mm) and diaphysis area (Dia 91-130 mm). Precision after repositioning was 1.9 and 2.1% for Epi and Dia, respectively. In the control group, at any site there was no significant difference between age groups 20-29 and 30-39, which thus were pooled to define the peak bone mass (PBM).(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequential studies of osteopenic bone disease in small animals require the availability of non-invasive, accurate and precise methods to assess bone mineral content (BMC) and bone mineral density (BMD). Dual-energy X-ray absorptiometry (DXA), which is currently used in humans for this purpose, can also be applied to small animals by means of adapted software. Precision and accuracy of DXA was evaluated in 10 rats weighing 50-265 g. The rats were anesthetized with a mixture of ketamine-xylazine administrated intraperitoneally. Each rat was scanned six times consecutively in the antero-posterior incidence after repositioning using the rat whole-body software for determination of whole-body BMC and BMD (Hologic QDR 1000, software version 5.52). Scan duration was 10-20 min depending on rat size. After the last measurement, rats were sacrificed and soft tissues were removed by dermestid beetles. Skeletons were then scanned in vitro (ultra high resolution software, version 4.47). Bones were subsequently ashed and dissolved in hydrochloric acid and total body calcium directly assayed by atomic absorption spectrophotometry (TBCa[chem]). Total body calcium was also calculated from the DXA whole-body in vivo measurement (TBCa[DXA]) and from the ultra high resolution measurement (TBCa[UH]) under the assumption that calcium accounts for 40.5% of the BMC expressed as hydroxyapatite. Precision error for whole-body BMC and BMD (mean +/- S.D.) was 1.3% and 1.5%, respectively. Simple regression analysis between TBCa[DXA] or TBCa[UH] and TBCa[chem] revealed tight correlations (n = 0.991 and 0.996, respectively), with slopes and intercepts which were significantly different from 1 and 0, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis applies Monte Carlo techniques to the study of X-ray absorptiometric methods of bone mineral measurement. These studies seek to obtain information that can be used in efforts to improve the accuracy of the bone mineral measurements. A Monte Carlo computer code for X-ray photon transport at diagnostic energies has been developed from first principles. This development was undertaken as there was no readily available code which included electron binding energy corrections for incoherent scattering and one of the objectives of the project was to study the effects of inclusion of these corrections in Monte Carlo models. The code includes the main Monte Carlo program plus utilities for dealing with input data. A number of geometrical subroutines which can be used to construct complex geometries have also been written. The accuracy of the Monte Carlo code has been evaluated against the predictions of theory and the results of experiments. The results show a high correlation with theoretical predictions. In comparisons of model results with those of direct experimental measurements, agreement to within the model and experimental variances is obtained. The code is an accurate and valid modelling tool. A study of the significance of inclusion of electron binding energy corrections for incoherent scatter in the Monte Carlo code has been made. The results show this significance to be very dependent upon the type of application. The most significant effect is a reduction of low angle scatter flux for high atomic number scatterers. To effectively apply the Monte Carlo code to the study of bone mineral density measurement by photon absorptiometry the results must be considered in the context of a theoretical framework for the extraction of energy dependent information from planar X-ray beams. Such a theoretical framework is developed and the two-dimensional nature of tissue decomposition based on attenuation measurements alone is explained. This theoretical framework forms the basis for analytical models of bone mineral measurement by dual energy X-ray photon absorptiometry techniques. Monte Carlo models of dual energy X-ray absorptiometry (DEXA) have been established. These models have been used to study the contribution of scattered radiation to the measurements. It has been demonstrated that the measurement geometry has a significant effect upon the scatter contribution to the detected signal. For the geometry of the models studied in this work the scatter has no significant effect upon the results of the measurements. The model has also been used to study a proposed technique which involves dual energy X-ray transmission measurements plus a linear measurement of the distance along the ray path. This is designated as the DPA( +) technique. The addition of the linear measurement enables the tissue decomposition to be extended to three components. Bone mineral, fat and lean soft tissue are the components considered here. The results of the model demonstrate that the measurement of bone mineral using this technique is stable over a wide range of soft tissue compositions and hence would indicate the potential to overcome a major problem of the two component DEXA technique. However, the results also show that the accuracy of the DPA( +) technique is highly dependent upon the composition of the non-mineral components of bone and has poorer precision (approximately twice the coefficient of variation) than the standard DEXA measurements. These factors may limit the usefulness of the technique. These studies illustrate the value of Monte Carlo computer modelling of quantitative X-ray measurement techniques. The Monte Carlo models of bone densitometry measurement have:- 1. demonstrated the significant effects of the measurement geometry upon the contribution of scattered radiation to the measurements, 2. demonstrated that the statistical precision of the proposed DPA( +) three tissue component technique is poorer than that of the standard DEXA two tissue component technique, 3. demonstrated that the proposed DPA(+) technique has difficulty providing accurate simultaneous measurement of body composition in terms of a three component model of fat, lean soft tissue and bone mineral,4. and provided a knowledge base for input to decisions about development (or otherwise) of a physical prototype DPA( +) imaging system. The Monte Carlo computer code, data, utilities and associated models represent a set of significant, accurate and valid modelling tools for quantitative studies of physical problems in the fields of diagnostic radiology and radiography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the influence of individual factors on differences in bone mineral density (BMD) using dual X-ray absorptiometry pencil beam (PB) and fan beam (FB) modes in vivo and in vitro. PB.BMD and FB.BMD of 63 normal Caucasian females ages 21-80 yr were measured at the lumbar spine and hip. Residuals of the FB/PB regression were used to assess the impact of height, weight, adiposity index (AI) (= weight/height(3/2)), back tissue thickness, and PB.BMD, respectively, on FB/PB difference. The Hologic Anthropomorphic Spine Phantom (ASP) was measured using the PB and FB modes at two different levels to assess the impact of scanning mode and focus distance. The European Spine Phantom (ESP) prototype, a geometrically well-defined phantom with known vertebral densities, was measured using PB and FB modes and analyzed manually to determine the impact of bone density on FB/PB difference and automatically to determine the impact of edge detection on FB/PB difference. Population BMD results were perfectly correlated, but significantly overestimated by 1.5% at the lumbar spine and underestimated by 0.7% at the neck, 1.8% at the trochanter, and 2.0% at the total hip, respectively, when using the FB compared with PB mode. At the lumbar spine, the FB/PB residual correlated negatively with height (r = 0.34, p < 0.01) and PB.BMD (r = 0.48, p <: 0. 0001) and positively with AI (r = 0.26, p < 0.05). At the hip, residual of trochanter correlated positively with weight (r = 0.36, p < 0.01) and AI (r = 0.36, p < 0.01). The FB mode significantly increased ASP BMD by 0.7% compared with PB. Using the FB mode, increasing focus distance significantly (p < 0.001) decreased area and bone mineral content, but not BMD. By contrast, increasing focus distance significantly decreased PB.BMD by 0.7%. With the ESP, the PB mode supplied accurate projected are of the bone (AREA) results but significant underestimation of specified BMD in the manual analysis. The FB mode significantly underestimated PB. AREA by 2.9% but fitted specified BMD quite well. FB/PB overestimation was larger for the low-density (+8.7%) than for the high-density vertebra (+4. 9%). The automated analysis resulted in more than 14% underestimation of PB. AREA (low-density vertebra) and an almost 13% overestimation of PB.BMD (high-density vertebra) using FB. In conclusion, FB and PB measurements are highly correlated at the lumbar spine and hip with small but significant BMD differences related to height, adiposity, and BMD. In clinical practice, it can be erroneous to switch from one method to another, especially in women with low bone density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Apply dual X-ray absorptiometry (DXA) to determine the amount of fat mass, lean mass, and bone mineral density in Mexican schoolchildren with and without obesity. Material and methods: We performed an observational, analytical, comparative, cross-sectional study of 80 Mexican schoolchildren who attended the Nutrition Clinic of the Pediatric Medical Center in Monterrey, Mexico during the period of January to April 2005. Body mass index (BMI) was determined to classify the participants according to the growth charts of the Centers for Disease Control and Prevention. Two groups of 40 children each (with and without obesity) were formed and DXA was carried out on each individual. Cronbach’s Alpha was used to determine instrument reliability and the Kolmogorov-Smirnov test was used to test the normality of numerical variables. Means were compared using Student´s t test. Results: Statistically signiicant differences were found in fat mass (p≤0.001) and lean mass (p≤0.001), but not in bone mineral content (p=0.051) between both groups. Conclusions: Differences exist in fat mass and lean mass in both groups, but not in bone mineral content between both groups. A signiicant positive correlation was found between fat mass, determined by DXA, and BMI in schoolchildren with and without obesity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Screening for osteoporotic vertebral fractures traditionally involves X-ray of the thoracic and lumbar spine. We evaluated use of dual energy X-ray technology in patients with osteoporosis. We found this technology useful in the clinic setting and it has advantages in that less radiation is delivered to the patient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material discrimination based on conventional or dual energy X-ray computed tomography (CT) imaging can be ambiguous. X-ray diffraction imaging (XDI) can be used to construct diffraction profiles of objects, providing new molecular signature information that can be used to characterize the presence of specific materials. Combining X-ray CT and diffraction imaging can lead to enhanced detection and identification of explosives in luggage screening. In this work we are investigating techniques for joint reconstruction of CT absorption and X-ray diffraction profile images of objects to achieve improved image quality and enhanced material classification. The initial results have been validated via simulation of X-ray absorption and coherent scattering in 2 dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to examine the agreement between the results of body fat (BF and BF%), fat-free mass (FFM) and FFM index (FFMI= FFM/height2) as estimated by skinfold anthropometry (ANT), bioelectrical impedance (BIA) and dual-energy X-ray absorptiometry (DXA) in two groups of men (> or = 50 y), one comprising healthy individuals (n=23) and the other, patients with chronic obstructive pulmonary disease (COPD) (n=24). Comparisons between body composition techniques were done by repeated measures ANOVA; the Bland & Altman procedure was used to analyse agreement. RESULTS AND CONCLUSIONS: 1) comparison between healthy and COPD groups showed significant differences between all studied variables; 2) in the healthy group, values for BF, BF%, FFM and FFMI were not significantly different when BIA or ANT was compared to DXA; however, in COPD, values for BF and BF% were significantly higher and for FFM and FFMI significantly lower when BIA was compared to DXA; in contrast, no differences were shown between values for these variables when ANT was compared with DXA; 3) Bland & Altman test, in both groups, showed no agreement between BIA and DXA and between ANT and DXA; it was also shown that body fat was overestimated and fat free mass underestimated by BIA in relation to DXA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual energy X-ray absorptiometry (DXA) is widely accepted as the reference method for diagnosis and monitoring of osteoporosis and for assessment of fracture risk, especially at hip. However, axial-DXA is not suitable for mass screening, because it is usually confined to specialized centers. We propose a two-step diagnostic approach to postmenopausal osteoporosis: the first step, using an inexpensive, widely available screening technique, aims at risk stratification in postmenopausal women; the second step, DXA of spine and hip is applied only to potentially osteoporotic women preselected on the basis of the screening measurement. In a group of 110 healthy postmenopausal woman, the capability of various peripheral bone measurement techniques to predict osteoporosis at spine and/or hip (T-score < -2.5SD using DXA) was tested using receiver operating characteristic (ROC) curves: radiographic absorptiometry of phalanges (RA), ultrasonometry at calcaneus (QUS. CALC), tibia (SOS.TIB), and phalanges (SOS.PHAL). Thirty-three women had osteoporosis at spine and/or hip with DXA. Areas under the ROC curves were 0.84 for RA, 0.83 for QUS.CALC, 0.77 for SOS.PHAL (p < 0.04 vs RA) and 0.74 for SOS.TIB (p < 0.02 vs RA and p = 0.05 vs QUS.CALC). For levels of sensitivity of 90%, the respective specificities were 67% (RA), 64% (QUS.CALC), 48% (SOS.PHAL), and 39% (SOS.TIB). In a cost-effective two-step, the price of the first step should not exceed 54% (RA), 51% (QUS.CALC), 42% (SOS.PHAL), and 25% (SOS.TIB). In conclusion, RA, QUS.CALC, SOS.PHAL, and SOS.TIB may be useful to preselect postmenopausal women in whom axial DXA is indicated to confirm/exclude osteoporosis at spine or hip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective was to compare ethnic differences in anthropometry, including size, proportions and fat distribution, and body composition in a cohort of seventy Caucasian (forty-four boys, twenty-six girls) and seventy-four urban Indigenous (thirty-six boys, thirty-eight girls) children (aged 9–15 years). Anthropometric measures (stature, body mass, eight skinfolds, thirteen girths, six bone lengths and five bone breadths) and body composition assessment using dual-energy X-ray absorptiometry were conducted. Body composition variables including total body fat percentage and percentage abdominal fat were determined and together with anthropometric indices, including BMI (kg/m2), abdominal:height ratio (AHtR) and sum of skinfolds, ethnic differences were compared for each sex. After adjustment for age, Indigenous girls showed significantly (P < 0·05) greater trunk circumferences and proportion of overweight and obesity than their Caucasian counterparts. In addition, Indigenous children had a significantly greater proportion (P < 0·05) of trunk fat. The best model for total and android fat prediction included sum of skinfolds and age in both sexes (>93 % of variation). Ethnicity was only important in girls where abdominal circumference and AHtR were included and Indigenous girls showed significantly (P < 0·05) smaller total/android fat deposition than Caucasian girls at the given abdominal circumference or AHtR values. Differences in anthropometric and fat distribution patterns in Caucasian and Indigenous children may justify the need for more appropriate screening criteria for obesity in Australian children relevant to ethnic origin.