954 resultados para Drosophila Birchii
Resumo:
Wolbachia are maternally inherited intracellular α-Proteobacteria found in numerous arthropod and filarial nematode species [1, 2 and 3]. They influence the biology of their hosts in many ways. In some cases, they act as obligate mutualists and are required for the normal development and reproduction of the host [4 and 5]. They are best known, however, for the various reproductive parasitism traits that they can generate in infected hosts. These include cytoplasmic incompatibility (CI) between individuals of different infection status, the parthenogenetic production of females, the selective killing of male embryos, and the feminization of genetic males [1 and 2]. Wolbachia infections of Drosophila melanogaster are extremely common in both wild populations and long-term laboratory stocks [6, 7 and 8]. Utilizing the newly completed genome sequence of Wolbachia pipientis wMel [9], we have identified a number of polymorphic markers that can be used to discriminate among five different Wolbachia variants within what was previously thought to be the single clonal infection of D. melanogaster. Analysis of long-term lab stocks together with wild-caught flies indicates that one of these variants has replaced the others globally within the last century. This is the first report of a global replacement of a Wolbachia strain in an insect host species. The sweep is at odds with current theory that cannot explain how Wolbachia can invade this host species given the observed cytoplasmic incompatibility characteristics of Wolbachia infections in D. melanogaster in the field [6].
Resumo:
Wolbachia pipientis is a vertically transmitted, obligate intracellular symbiont of arthropods. The bacterium is best known for its ability to manipulate host reproductive biology where it can induce cytoplasmic incompatibility, parthenogenesis, feminization and male-killing. In addition to the various reproductive phenotypes it generates through interaction with host reproductive tissue it is also known to infect somatic tissues. However, relatively little is known about the consequences of infection of these tissues with the exception that in some hosts Wolbachia acts as a classical mutualist and in others a pathogen, dramatically shortening adult insect lifespan. Manipulation experiments have demonstrated that the severity of Wolbachia-induced effects on the host is determined by a combination of host genotype, Wolbachia strain, host tissue localization, and interaction with the environment. The recent completion of the whole genome sequence of Wolbachia pipientis wMel strain indicates that it is likely to use a type IV secretion system to establish and maintain infection in its host. Moreover, an unusual abundance of genes encoding proteins with eukaryotic-like ankyrin repeat domains suggest a function in the various described phenotypic effects in hosts.
Resumo:
Drosophila simulans strains infected with three different Wolbachia strains were generated by experimental injection of a third symbiont into a naturally double-infected strain. This transfer led to a substantial increase in total Wolbachia density in the host strain. Each of the three symbionts was stably transmitted in the presence of the other two. Triple-infected males were incompatible with double-infected females. No evidence was obtained for interference between modification effects of the different Wolbachia strains in males. Some incompatibility was observed between triple-infected males and females. However, this incompatibility reaction is not a specific property of triple-infected flies, because it was also observed in double-infected strains.
Resumo:
Intracellular Wolbachia infections are extremely common in arthropods and exert profound control over the reproductive biology of the host. However, very little is known about the underlying molecular mechanisms which mediate these interactions with the host. We examined protein synthesis by Wolbachia in a Drosophila host in vivo by selective metabolic labelling of prokaryotic proteins and subsequent analysis by 1D and 2D gel electrophoresis. Using this method we could identify the major proteins synthesized by Wolbachia in ovaries and testes of flies. Of these proteins the most abundant was of low molecular weight and showed size variation between Wolbachia strains which correlated with the reproductive phenotype they generated in flies. Using the gel systems we employed it was not possible to identify any proteins of Wolbachia origin in the mature sperm cells of infected flies.
Resumo:
Various stocks of Drosophila mauritiana and D. sechellia were found to be infected with Wolbachia, a Rickettsia-like bacterium that is known to cause cytoplasmic incompatibility and other reproductive abnormalities in arthropods. Testing for the expression of cytoplasmic incompatibility in these two species showed partial incompatibility in D. sechellia but no expression of incompatibility in D. mauritiana. To determine whether absence of cytoplasmic incompatibility in D. mauritiana was due to either the bacterial or host genome, we transferred bacteria from D. mauritiana into an uninfected strain of D. simulans, a host species known to express high levels of incompatibility with endogenous Wolbachia. We also performed the reciprocal transfer of the natural D. simulans Riverside infection into a tetracycline-treated stock of D. mauritiana. In each case, the ability to express incompatibility was unaltered by the different host genetic background. These experiments indicate that in D. simulans and D. mauritiana expression of the cytoplasmic incompatibility phenotype is determined by the bacterial strain and that D. mauritiana harbors a neutral strain of Wolbachia.
Resumo:
Inherited rickettsial symbionts of the genus Wolbachia occur commonly in arthropods and have been implicated in the expression of parthenogenesis, feminization and cytoplasmic incompatibility phenomena in their respective hosts. Here we use purified Wolbachia from the Asian tiger mosquito, Aedes albopictus, to replace the natural infection of Drosophila simulans by means of embryonic microinjection techniques. The transferred Wolbachia infection behaves like a natural Drosophila infection with regard to its inheritance, cytoskeleton interactions and ability to induce incompatibility when crossed with uninfected flies. The transinfected flies are bidirectionally incompatible with all other naturally infected strains of Drosophila simulans, however, and as such represent a unique crossing type. The successful transfer of this symbiont between distantly related hosts suggests that it may be possible to introduce this agent experimentally into arthropod species of medical and agricultural importance in order to manipulate natural populations genetically.
Resumo:
Cytoplasmic incompatibility (CI) in Drosophila simulans is related to infection of the germ line by a rickettsial endosymbiont (genus Wolbachia). Wolbachia were transferred by microinjection of egg cytoplasm into uninfected eggs of both D. simulans and D. melanogaster to generate infected populations. Transinfected strains of D. melanogaster with lower densities of Wolbachia than the naturally infected D. simulans strain did not express high levels of CI. However, transinfected D. melanogaster egg cytoplasm, transferred back into D. simulans, generated infected populations that expressed CI at levels near those of the naturally infected strain. A transinfected D. melanogaster line selected for increased levels of CI expression also displayed increased symbiont densities. These data suggest that a threshold level of infection is required for normal expression of CI and that host factors help determine the density of the symbiont in the host.
Resumo:
Cytoplasmic incompatibility is known to occur between strains of both Drosophila simulans and D. melanogaster. Incompatibility is associated with the infection of Drosophila with microorganismal endosymbionts. This paper reports survey work conducted on strains of D. simulans and D. melanogaster from diverse geographical locations finding that infected populations are relatively rare and scattered in their distribution. The distribution of infected populations of D. simulans appears to be at odds with deterministic models predicting the rapid spread of the infection through uninfected populations. Examination of isofemale lines from four localities in California where populations appear to be polymorphic for the infection failed to find evidence for consistent assortative mating preferences between infected and uninfected populations that may explain the basis for the observed polymorphism.
Resumo:
Cytoplasmic incompatibility (CI) describes the phenomenon whereby eggs fertilized by sperm from insects infected with a rickettsial endosymbiont fail to hatch. Unidirectional CI between conspecific populations of insects is a well documented phenomenon. Bidirectional CI has, however, only been described in mosquito populations, and recently between closely related species of parasitic wasps, where it is of interest as both an unusual form of reproductive isolation and as a potential means of insect population suppression. Here we report on the first known example of bidirectional CI between conspecific populations of Drosophila simulans. Further, we show that defects as early as the first cleavage division are associated with CI. This observation suggests that the cellular basis of CI involves disruption of processes before or during zygote formation and that CI arises from defects in the structure and/or function of the sperm during fertilization.
Resumo:
We wish to alert people studying early embryonic development in the fruit-fly Drosophila melanogaster of the possible presence of commensal parasites in some stocks.
Resumo:
The cut gene of Drosophila melanogaster is an identity selector gene that establishes the program of development and differentiation of external sense organs. Mutations in the cut gene cause a transformation of the external sense organs into chordotonal organs, originally assessed by the use of immunostaining methods [Bodmer et al. (1987): Cell, 51:293-307]. Because of evidence that axonal projections of the transformed neurons within the central nervous system are not completely switched in cut mutants, the transformation of the four cells making up a sense organ was reassessed using single-cell staining with fluorescent dye and differential interface contrast (DIC) microscopy of the embryo and larva. The results provide strong evidence that all cells of the sense organs are completely transformed, exhibiting the morphologies and organelles characteristic of chordotonal sense organs. A comparison of the structures of external sense organs and chordotonal organs indicates that a number of the differences could be due to the degree of development of common structures, and that cut or downstream genes modulate effector genes that are normally utilized in both receptor types. The possible derivation of insect chordotonal and external sense organs from a receptor type found in crustaceans is discussed in the light of arthropod phylogenetics and the molecular genetics of sense organ development. (C) 1997 Wiley-Liss, Inc.
Resumo:
The complete nucleotide sequence of the genomic RNA from the insect picorna-like virus Drosophila C virus (DCV) was determined. The DCV sequence predicts a genome organization different to that of other RNA virus families whose sequences are known. The single-stranded positive-sense genomic RNA is 9264 nucleotides in length and contains two large open reading frames (ORFs) which are separated by 191 nucleotides. The 5' ORF contains regions of similarities with the RNA-dependent RNA polymerase, helicase and protease domains of viruses from the picornavirus, comovirus and sequivirus families. The 3' ORF encodes the capsid proteins as confirmed by N-terminal sequence analysis of these proteins. The capsid protein coding region is unusual in two ways: firstly the cistron appears to lack an initiating methionine and secondly no subgenomic RNA is produced, suggesting that the proteins may be translated through internal initiation of translation from the genomic length RNA. The finding of this novel genome organization for DCV shows that this virus is not a member of the Picornaviridae as previously thought, but belongs to a distinct and hitherto unrecognized virus family.
Resumo:
We developed a system for time-lapse observation of identified neurons in the central nervous system (CNS) of the Drosophila embryo. Using this system, we characterize the dynamics of filopodia and axon growth of the motorneuron RP2 as it navigates anteriorly through the CNS and then laterally along the intersegmental nerve (ISN) into the periphery. We find that both axonal extension and turning occur primarily through the process of filopodial dilation. In addition, we used the GAL4-UAS system to express the fusion protein Tau-GFP in a subset of neurons, allowing us to correlate RP2's patterns of growth with a subset of axons in its environment. In particular, we show that RP2's sharp lateral turn is coincident with the nascent ISN. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Reverse transcription coupled with polymerase chain reaction and restriction enzyme analysis was used to characterize 12 Drosophila C virus isolates from geographically different regions. A 1.2-kb fragment was amplified from cDNA and profiles from digestion with 20 restriction enzymes were generated. Analysis of the restriction fragment data gave estimates of nucleotide divergence of 0-10% between isolates. The isolates were grouped on the basis of genetic distance estimates derived from the restriction data. For the isolates from which a single genotype could be purified, a geographical pattern in the distribution of viral genotypes was identified. The 4 Moroccan isolates were very closely related to each other, differing in only 1 restriction profile. The 2 Australian isolates were each other's closest relatives, as were the 2 isolates first recovered in France. The PCR-RFLP technique used in this study has provided us with a simple procedure which can be used to characterize DCV isolates. A single enzyme, Tag I, generated 5 distinct and diagnostic restriction fragment patterns, which allowed easy assignment of isolates to one of the five viral genotypes identified in this study. (C) 1999 Academic Press.
Resumo:
Life histories are generally assumed to evolve via antagonistic pleiotropy (negative genetic correlations) among traits, and trade-offs between life-history traits are typically studied using either phenotypic manipulations or selection experiments. We investigated the trade-off between egg size and fecundity in Drosophila melanogaster by examining both the phenotypic and genetic relationships between these traits after artificial selection for large and small eggs, relative to female body size. Egg size responded strongly to selection in both directions, increasing in the large-egg selected lines and decreasing in the small-egg selected lines. Phenotypic correlations between egg size and fecundity in the large-egg selected lines were negative, but no relationship between these traits occurred in either the control or small-egg selected lines. There was no negative genetic correlation between egg size and fecundity. Total reproductive allocation decreased in the small-egg selected lines but did not increase in the large-egg lines. Our results have three implications. First, our selection procedure may have forced females selected for large eggs into a physiological trade-off not reflected in a negative genetic correlation between these traits. Second, the lack of a negative genetic correlation between egg size and number suggests that the phenotypic trade-off frequently observed between egg size and number in other organisms may not evolve over the short term via a direct genetic trade-off whereby increases in egg size are automatically accompanied by decreased fecundity. Finally, total reproductive allocation may not evolve independently of egg size as commonly assumed.