982 resultados para Double addition de réactifs de Grignard vinyliques
Resumo:
The resection of DNA double-strand breaks (DSBs) to generate ssDNA tails is a pivotal event in the cellular response to these breaks. In the two-step model of resection, primarily elucidated in yeast, initial resection by Mre11-CtIP is followed by extensive resection by two distinct pathways involving Exo1 or BLM/WRN-Dna2. However, resection pathways and their exact contributions in humans in vivo are not as clearly worked out as in yeast. Here, we examined the contribution of Exo1 to DNA end resection in humans in vivo in response to ionizing radiation (IR) and its relationship with other resection pathways (Mre11-CtIP or BLM/WRN). We find that Exo1 plays a predominant role in resection in human cells along with an alternate pathway dependent on WRN. While Mre11 and CtIP stimulate resection in human cells, they are not absolutely required for this process and Exo1 can function in resection even in the absence of Mre11-CtIP. Interestingly, the recruitment of Exo1 to DNA breaks appears to be inhibited by the NHEJ protein Ku80, and the higher level of resection that occurs upon siRNA-mediated depletion of Ku80 is dependent on Exo1. In addition, Exo1 may be regulated by 53BP1 and Brca1, and the restoration of resection in BRCA1-deficient cells upon depletion of 53BP1 is dependent on Exo1. Finally, we find that Exo1-mediated resection facilitates a transition from ATM- to ATR-mediated cell cycle checkpoint signaling. Our results identify Exo1 as a key mediator of DNA end resection and DSB repair and damage signaling decisions in human cells.
Resumo:
The tetraalkylation of N-benzylphthalimide is the major yield limiting step in the common synthetic route to isoindoline nitroxides. The progress of this reaction was found to be limited by the formation of previously unobserved mono- and dialkyl side products that do not lead to the desired product. The yield for the tetraalkylation of N-benzylphthalimide with ethylmagnesium iodide could be increased (60% over 2 steps) when a step-wise addition sequence was employed. The new two step synthesis offers a practical preparative scale alternative to the current approach.
Resumo:
Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants.
Resumo:
We present the treatment rationale and study design of the MetLung phase III study. This study will investigate onartuzumab (MetMAb) in combination with erlotinib compared with erlotinib alone, as second- or third-line treatment, in patients with advanced non-small-cell lung cancer (NSCLC) who are Met-positive by immunohistochemistry. Approximately 490 patients (245 per treatment arm) will receive erlotinib (150 mg oral daily) plus onartuzumab or placebo (15 mg/kg intravenous every 3 weeks) until disease progression, unacceptable toxicity, patient or physician decision to discontinue, or death. The efficacy objectives of this study are to compare overall survival (OS) (primary endpoint), progression-free survival, and response rates between the 2 treatment arms. In addition, safety, quality of life, pharmacokinetics, and translational research will be investigated across treatment arms. If the primary objective (OS) is achieved, this study will provide robust results toward an alternative treatment option for patients with Met-positive second- or third-line NSCLC. © 2012 Elsevier Inc. All Rights Reserved.
Resumo:
In Arabidopsis thaliana (Arabidopsis), DICER-LIKE1 (DCL1) functions together with the double-stranded RNA binding protein (dsRBP), DRB1, to process microRNAs (miRNAs) from their precursor transcripts prior to their transfer to the RNA-induced silencing complex (RISC). miRNA-loaded RISC directs RNA silencing of cognate mRNAs via ARGONAUTE1 (AGO1)-catalyzed cleavage. Short interefering RNAs (siRNAs) are processed from viral-derived or transgene-encoded molecules of doublestranded RNA (dsRNA) by the DCL/dsRBP partnership, DCL4/DRB4, and are also loaded to AGO1-catalyzed RISC for cleavage of complementary mRNAs. Here, we use an artificial miRNA (amiRNA) technology, transiently expressed in Nicotiana benthamiana, to produce a series of amiRNA duplexes with differing intermolecular thermostabilities at the 5′ end of duplex strands. Analyses of amiRNA duplex strand accumulation and target transcript expression revealed that strand selection (amiRNA and amiRNA*) is directed by asymmetric thermostability of the duplex termini. The duplex strand possessing a lower 59 thermostability was preferentially retained by RISC to guide mRNA cleavage of the corresponding target transgene. In addition, analysis of endogenous miRNA duplex strand accumulation in Arabidopsis drb1 and drb2345 mutant plants revealed that DRB1 dictates strand selection, presumably by directional loading of the miRNA duplex onto RISC for passenger strand degradation. Bioinformatic and Northern blot analyses of DCL4/DRB4-dependent small RNAs (miRNAs and siRNAs) revealed that small RNAs produced by this DCL/dsRBP combination do not conform to the same terminal thermostability rules as those governing DCL1/DRB1-processed miRNAs. This suggests that small RNA processing in the DCL1/DRB1-directed miRNA and DCL4/DRB4-directed sRNA biogenesis pathways operates via different mechanisms.
Resumo:
Purpose To investigate the effects of a natural oil-based emulsion containing allantoin versus aqueous cream for preventing and managing radiation induced skin reactions (RISR). Methods and Materials A total of 174 patients were randomised and participated in the study. Patients either received Cream 1 (the natural oil-based emulsion containing allantoin) or Cream 2 (aqueous cream). Skin toxicity, pain, itching and skin-related quality of life scores were collected for up to four weeks after radiation treatment. Results Patients who received Cream 1 had a significantly lower average level of Common Toxicity Criteria at week 3 (p<0.05), but had statistically higher average levels of skin toxicity at weeks 7, 8 and 9 (all p<0.001). Similar results were observed when skin toxicity was analysed by grades. With regards to pain, patients in the Cream 2 group had a significantly higher average level of worst pain (p<0.05) and itching (p=0.046) compared to the Cream 1 group at week 3, however these differences were not observed at other weeks. In addition, there was a strong trend for Cream 2 to reduce the incidence of grade 2 or more skin toxicity in comparison to Cream 1 (p=0.056). Overall, more participants in the Cream 1 group were required to use another topical treatment at weeks 8 (p=0.049) and 9 (p=0.01). Conclusion The natural oil-based emulsion containing allantoin appears to have similar effects for managing skin toxicity compared to aqueous cream up to week 5, however, it becomes significantly less effective at later weeks into the radiation treatment and beyond treatment completion (week 6 and beyond). There were no major differences in pain, itching and skin-related quality of life. In light of these results, clinicians and patients can base their decision on costs and preferences. Overall, aqueous cream appears to be a more preferred option.
Resumo:
• The doctrine of double effect is an exception to the general rule that taking active steps that end life is unlawful. • The essence of the doctrine at common law is intention. • Hastening a patient’s death through palliative care will be lawful provided the primary intention is to relieve pain, and not cause death, even if that death is foreseen. • Some States have enacted legislative excuses that deal with the provision of palliative care. • These statutory excuses tend to be stricter than the common law as they impose other requirements in addition to having an appropriate intent, such as adherence to some level of recognised medical practice.
Resumo:
Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds.
Resumo:
Functional connectivity (FC) analyses of resting-state fMRI data allow for the mapping of large-scale functional networks, and provide a novel means of examining the impact of dopaminergic challenge. Here, using a double-blind, placebo-controlled design, we examined the effect of L-dopa, a dopamine precursor, on striatal resting-state FC in 19 healthy young adults.Weexamined the FC of 6 striatal regions of interest (ROIs) previously shown to elicit networks known to be associated with motivational, cognitive and motor subdivisions of the caudate and putamen (Di Martino et al., 2008). In addition to replicating the previously demonstrated patterns of striatal FC, we observed robust effects of L-dopa. Specifically, L-dopa increased FC in motor pathways connecting the putamen ROIs with the cerebellum and brainstem. Although L-dopa also increased FC between the inferior ventral striatum and ventrolateral prefrontal cortex, it disrupted ventral striatal and dorsal caudate FC with the default mode network. These alterations in FC are consistent with studies that have demonstrated dopaminergic modulation of cognitive and motor striatal networks in healthy participants. Recent studies have demonstrated altered resting state FC in several conditions believed to be characterized by abnormal dopaminergic neurotransmission. Our findings suggest that the application of similar experimental pharmacological manipulations in such populations may further our understanding of the role of dopaminergic neurotransmission in those conditions.
Resumo:
The present study explored the effects of the double counter twisted tapes on heat transfer and fluid friction characteristics in a heat exchanger tube. The double counter twisted tapes were used as counter-swirl flow generators in the test section. The experiments were performed with double counter twisted tapes of four different twist ratios (y = 1.95, 3.85, 5.92 and 7.75) using air as the testing fluid in a circular tube turbulent flow regime where the Reynolds number was varied from 6950 to 50,050. The experimental results demonstrated that the Nusselt number, friction factor and thermal enhancement efficiency were increased with decreasing twist ratio. The results also revealed that the heat transfer rate in the tube fitted with double counter twisted tape was significantly increased with corresponding increase in pressure drop. In the range of the present work, heat transfer rate and friction factor were obtained to be around 60 to 240% and 91 to 286% higher than those of the plain tube values, respectively. The maximum thermal enhancement efficiency of 1.34 was achieved by the use of double counter twisted tapes at constant blower power. In addition, the empirical correlations for the Nusselt number, friction factor and thermal enhancement efficiency were also developed, based on the experimental data.
Resumo:
There exists various suggestions for building a functional and a fault-tolerant large-scale quantum computer. Topological quantum computation is a more exotic suggestion, which makes use of the properties of quasiparticles manifest only in certain two-dimensional systems. These so called anyons exhibit topological degrees of freedom, which, in principle, can be used to execute quantum computation with intrinsic fault-tolerance. This feature is the main incentive to study topological quantum computation. The objective of this thesis is to provide an accessible introduction to the theory. In this thesis one has considered the theory of anyons arising in two-dimensional quantum mechanical systems, which are described by gauge theories based on so called quantum double symmetries. The quasiparticles are shown to exhibit interactions and carry quantum numbers, which are both of topological nature. Particularly, it is found that the addition of the quantum numbers is not unique, but that the fusion of the quasiparticles is described by a non-trivial fusion algebra. It is discussed how this property can be used to encode quantum information in a manner which is intrinsically protected from decoherence and how one could, in principle, perform quantum computation by braiding the quasiparticles. As an example of the presented general discussion, the particle spectrum and the fusion algebra of an anyon model based on the gauge group S_3 are explicitly derived. The fusion algebra is found to branch into multiple proper subalgebras and the simplest one of them is chosen as a model for an illustrative demonstration. The different steps of a topological quantum computation are outlined and the computational power of the model is assessed. It turns out that the chosen model is not universal for quantum computation. However, because the objective was a demonstration of the theory with explicit calculations, none of the other more complicated fusion subalgebras were considered. Studying their applicability for quantum computation could be a topic of further research.
Resumo:
Recently, partially ionic boron (γ-B28) has been predicted and observed in pure boron, in bulk phase and controlled by pressure [Nature, 457 (2009) 863]. By using ab initio evolutionary structure search, we report the prediction of ionic boron at a reduced dimension and ambient pressure, namely, the two-dimensional (2D) ionic boron. This 2D boron structure consists of graphene-like plane and B2 atom pairs, with the P6/mmm space group and 6 atoms in the unit cell, and has lower energy than the previously reported α-sheet structure and its analogues. Its dynamical and thermal stability are confirmed by the phonon-spectrum and ab initio molecular dynamics simulation. In addition, this phase exhibits double Dirac cones with massless Dirac fermions due to the significant charge transfer between the graphene-like plane and B2 pair that enhances the energetic stability of the P6/mmm boron. A Fermi velocity (vf) as high as 2.3 x 106 m/s, which is even higher than that of graphene (0.82 x 106 m/s), is predicted for the P6/mmm boron. The present work is the first report of the 2D ionic boron at atmospheric pressure. The unique electronic structure renders the 2D ionic boron a promising 2D material for applications in nanoelectronics.
Resumo:
The (overall trans) addition of hydrogen chloride to cyclohex-1- enecarbonitrile in anhydrous alcoholic media proceeds to give cis-2-chlorocyclohexanecarboxylate (together with some cis-2- chlorocyclohexanecarboxamide): no corresponding products with the trans-configuration are detectable. In anhydrous ether the addition proceeds to give a single isomer, presumably cis-, of 2-chlorocyclohexanecarbonitrile, indicating that the configuration of the products may not be equilibrium-controlled in alcoholic media. An examination of the steric factors indicates that the transition state for protonation of the presumed intermediate, 2-chlorocyclohexylidenemethylideneimine, leading to cis-product is favoured if interaction between the lateral π-orbital of the C-N double bond and the lone-pairs on the chlorine atom at the 2-position is large. Consideration of interactions in the transition states meets Zimmerman's criticism that invoking A1, 3 interaction existing in ground states to explain product configuration takes insufficient account of the Curtin-Hammett principle.
Resumo:
1,1,3-Trimethyl-2-thioxo-1,2-dihydronaphthale(1n)e adds to electron-rich olefins upon excitation to either Sz (PP*) or Sl (ns*) states. Excitation to S2 level resulted in the same mixture of products, namely thietane and 1,4-dithiane, as on excitation to S1 level. Addition occurs to the thiocarbonyl function and not to the carbon-carbon double bond. The addition is site-specific, and the formation of thietane is regiospecific. The ratio of thietane to 1,4-dithiane in the product mixture is dependent on the concentration of the thioenone. The addition is suggested to originate from the lowest triplet state (Tl) and involves diradical intermediates.
Resumo:
The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 angstrom and c = 44.59 angstrom. The structure has been determined by X-ray diffraction methods at 2.2 angstrom resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.