858 resultados para Dose-Response Relationship, Drug
Resumo:
INTRODUCTION: We previously reported models that characterized the synergistic interaction between remifentanil and sevoflurane in blunting responses to verbal and painful stimuli. This preliminary study evaluated the ability of these models to predict a return of responsiveness during emergence from anesthesia and a response to tibial pressure when patients required analgesics in the recovery room. We hypothesized that model predictions would be consistent with observed responses. We also hypothesized that under non-steady-state conditions, accounting for the lag time between sevoflurane effect-site concentration (Ce) and end-tidal (ET) concentration would improve predictions. METHODS: Twenty patients received a sevoflurane, remifentanil, and fentanyl anesthetic. Two model predictions of responsiveness were recorded at emergence: an ET-based and a Ce-based prediction. Similarly, 2 predictions of a response to noxious stimuli were recorded when patients first required analgesics in the recovery room. Model predictions were compared with observations with graphical and temporal analyses. RESULTS: While patients were anesthetized, model predictions indicated a high likelihood that patients would be unresponsive (> or = 99%). However, after termination of the anesthetic, models exhibited a wide range of predictions at emergence (1%-97%). Although wide, the Ce-based predictions of responsiveness were better distributed over a percentage ranking of observations than the ET-based predictions. For the ET-based model, 45% of the patients awoke within 2 min of the 50% model predicted probability of unresponsiveness and 65% awoke within 4 min. For the Ce-based model, 45% of the patients awoke within 1 min of the 50% model predicted probability of unresponsiveness and 85% awoke within 3.2 min. Predictions of a response to a painful stimulus in the recovery room were similar for the Ce- and ET-based models. DISCUSSION: Results confirmed, in part, our study hypothesis; accounting for the lag time between Ce and ET sevoflurane concentrations improved model predictions of responsiveness but had no effect on predicting a response to a noxious stimulus in the recovery room. These models may be useful in predicting events of clinical interest but large-scale evaluations with numerous patients are needed to better characterize model performance.
Resumo:
Clinical Trial
Resumo:
The acute myeloid leukaemia (AML)14 trial addressed four therapeutic questions in patients predominantly aged over 60 years with AML and High Risk Myelodysplastic Syndrome: (i) Daunorubicin 50 mg/m(2) vs. 35 mg/m(2); (ii) Cytarabine 200 mg/m(2) vs. 400 mg/m(2) in two courses of DA induction; (iii) for part of the trial, patients allocated Daunorubicin 35 mg/m(2) were also randomized to receive, or not, the multidrug resistance modulator PSC-833 in a 1:1:1 randomization; and (iv) a total of three versus four courses of treatment. A total of 1273 patients were recruited. The response rate was 62% (complete remission 54%, complete remission without platelet/neutrophil recovery 8%); 5-year survival was 12%. No benefits were observed in either dose escalation randomization, or from a fourth course of treatment. There was a trend for inferior response in the PSC-833 arm due to deaths in induction. Multivariable analysis identified cytogenetics, presenting white blood count, age and secondary disease as the main predictors of outcome. Although patients with high Pgp expression and function had worse response and survival, this was not an independent prognostic factor, and was not modified by PSC-833. In conclusion, these four interventions have not improved outcomes in older patients. New agents need to be explored and novel trial designs are required to maximise prospects of achieving timely progress.
Resumo:
To evaluate the dose-response relationship of lixisenatide (AVE0010), a glucagon-like peptide-1 (GLP-1) receptor agonist, in metformin-treated patients with Type 2 diabetes.
Resumo:
BACKGROUND & AIMS: Individuals who began taking low-dose aspirin before they were diagnosed with colorectal cancer were reported to have longer survival times than patients who did not take this drug. We investigated survival times of patients who begin taking low-dose aspirin after a diagnosis of colorectal cancer in a large population-based cohort study.
METHODS: We performed a nested case-control analysis using a cohort of 4794 patients diagnosed with colorectal cancer from 1998 through 2007, identified from the UK Clinical Practice Research Datalink and confirmed by cancer registries. There were 1559 colorectal cancer-specific deaths, recorded by the Office of National Statistics; these were each matched with up to 5 risk-set controls. Conditional logistic regression was used to calculate odds ratios (OR) and 95% confidence intervals (CI), based on practitioner-recorded aspirin usage.
RESULTS: Overall, low-dose aspirin use after a diagnosis of colorectal cancer was not associated with colorectal cancer-specific mortality (adjusted OR = 1.06; 95% CI: 0.92-1.24) or all-cause mortality (adjusted OR = 1.06; 95% CI: 0.94-1.19). A dose-response association was not apparent; for example, low-dose aspirin use for more than 1 year after diagnosis was not associated with colorectal cancer-specific mortality (adjusted OR = 0.98; 95% CI: 0.82-1.19). There was also no association between low-dose aspirin usage and colon cancer-specific mortality (adjusted OR = 1.02; 95% CI: 0.83-1.25) or rectal cancer-specific mortality (adjusted OR = 1.10; 95% CI: 0.88-1.38).
CONCLUSIONS: In a large population-based cohort, low-dose aspirin usage after diagnosis of colorectal cancer did not increase survival time.
Resumo:
It was found recently that locomotor and rewarding effects of psychostimulants and opiates were dramatically decreased or suppressed in mice lacking alpha1b-adrenergic receptors [alpha1b-adrenergic receptor knock-outs (alpha1bAR-KOs)] (Drouin et al., 2002). Here we show that blunted locomotor responses induced by 3 and 6 mg/kg d-amphetamine in alpha1bAR-KO mice [-84 and -74%, respectively, when compared with wild-type (WT) mice] are correlated with an absence of d-amphetamine-induced increase in extracellular dopamine (DA) levels in the nucleus accumbens of alpha1bAR-KO mice. Moreover, basal extracellular DA levels in the nucleus accumbens are lower in alpha1bAR-KO than in WT littermates (-28%; p < 0.001). In rats however, prazosin, an alpha1-adrenergic antagonist, decreases d-amphetamine-induced locomotor hyperactivity without affecting extracellular DA levels in the nucleus accumbens, a finding related to the presence of an important nonfunctional release of DA (Darracq et al., 1998). We show here that local d-amphetamine releases nonfunctional DA with the same affinity but a more than threefold lower amplitude in C57BL6/J mice than in Sprague Dawley rats. Altogether, this suggests that a trans-synaptic mechanism amplifies functional DA into nonfunctional DA release. Our data confirm the presence of a powerful coupling between noradrenergic and dopaminergic neurons through the stimulation of alpha1b-adrenergic receptors and indicate that nonfunctional DA release is critical in the interpretation of changes in extracellular DA levels. These results suggest that alpha1b-adrenergic receptors may be important therapeutic pharmacological targets not only in addiction but also in psychosis because most neuroleptics possess anti-alpha1-adrenergic properties.
Resumo:
Cross-talk between NK cells and dendritic cells (DCs) is critical for the potent therapeutic response to dsRNA, but the receptors involved remained controversial. We show in this paper that two dsRNAs, polyadenylic-polyuridylic acid and polyinosinic-polycytidylic acid [poly(I:C)], similarly engaged human TLR3, whereas only poly(I:C) triggered human RIG-I and MDA5. Both dsRNA enhanced NK cell activation within PBMCs but only poly(I:C) induced IFN-gamma. Although myeloid DCs (mDCs) were required for NK cell activation, induction of cytolytic potential and IFN-gamma production did not require contact with mDCs but was dependent on type I IFN and IL-12, respectively. Poly(I:C) but not polyadenylic-polyuridylic acid synergized with mDC-derived IL-12 for IFN-gamma production by acting directly on NK cells. Finally, the requirement of both TLR3 and Rig-like receptor (RLR) on mDCs and RLRs but not TLR3 on NK cells for IFN-gamma production was demonstrated using TLR3- and Cardif-deficient mice and human RIG-I-specific activator. Thus, we report the requirement of cotriggering TLR3 and RLR on mDCs and RLRs on NK cells for a pathogen product to induce potent innate cell activation.
Resumo:
The aim of this study was to establish methodologies for verification of the fluoride solution dose-response relationship using bovine enamel and pH-cycling models. Six models of the cariogenic challenge were performed, varying the time of demineralization and pH, time of remineralization, composition of de- and remineralization solutions, frequency and time of application of treatment solutions and pH-cycling duration. For the evaluation of the fluoride effect on caries dynamics, two proposed models provided for improvement in standardization of methods leading to a higher level of precision, demonstrating a dose response between treatments with regard to surface microhardness and Delta Z. For the evaluation of the fluoride effect on enamel remineralization, the addition of fluoride to the de- and remineralization solutions and the reduction of frequency and time of application of fluoride solutions led to a more suitable pH-cycling model. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
The utilization of dentifrices with low fluorine concentration, for children under 6 years of age, has been suggested to reduce the risks of dental fluorosis. However, in order to have anticariogenic potential, the dentifrice should form loosely-bound fluorine (CaF2) on dental enamel. Considering that the formation of CaF2 is a function inversely related to pH, dentifrices with pH 5.5, with 275, 550 and 1,100 ppm F (NaF/silica) were developed in order to assess dose-response effects. A comparison between those dentifrices, a placebo product and the Crest toothpaste (positive control - standard) was carried out. Furthermore, the bioavailability of dentifrices, in terms of formation of total fluorine (TF), CaF2, and fluorapatite (FA) on human dental enamel, was evaluated. An ion-specific electrode was utilized for the determination of the dosage of fluorine. The results revealed that the dentifrice with 550 ppm F was more effective than both the placebo and the dentifrice with 275 ppm, presenting no difference in relation to the positive control (p > 0.05). A dose-effect correlation was observed as to the CaF2 formed. In conclusion, the modified formulation with 550 ppm F can be considered as effective as the standard dentifrice with 1,100 ppm, and its utilization would be safer with regard to dental fluorosis.
Resumo:
Background & Aims Patients infected with hepatitis C virus (HCV) genotype 1, body weight <85 kg, and high baseline viral load respond poorly to standard doses of pegylated interferon (peginterferon) and ribavirin. We evaluated intensified therapy with peginterferon alfa-2a plus ribavirin. Methods This double-blind randomized trial included HCV genotype 1-infected outpatients from hepatology clinics with body weight <85 kg and HCV RNA titer <400,000 IU/mL. Patients were randomized to 180 μg/wk peginterferon alfa-2a for 48 weeks plus 1200 mg/day ribavirin (standard of care) (group A, n = 191) or 1400/1600 mg/day ribavirin (group B, n = 189). Additional groups included 360 μg/wk peginterferon alfa-2a for 12 weeks then 180 μg/wk peginterferon alfa-2a for 36 weeks plus 1200 mg/day ribavirin (group C, n = 382) or 1400/1600 mg/day ribavirin (group D, n = 383). Follow-up lasted 24 weeks after treatment. Results Sustained virologic response rates (HCV RNA level <15 IU/mL at end of follow-up) in groups A, B, C, and D were 38%, 43%, 44%, and 41%, respectively. There were no significant differences among the 4 groups or between pooled peginterferon alfa-2a regimens (A + B vs C + D: odds ratio [OR], 1.08; 95% confidence interval [CI], 0.831.39; P = .584) or pooled ribavirin regimens (A + C vs B + D: OR, 1.00; 95% CI, 0.791.28; P = .974). Conclusions In patients infected with HCV genotype 1 who are difficult to treat (high viral load, body weight <85 kg), a 12-week induction regimen of peginterferon alfa-2a and/or higher-dose ribavirin is not more effective than the standard regimen. © 2010 AGA Institute.
Resumo:
BACKGROUND AND GOAL: Patients infected with hepatitis C virus (HCV) with elevated low-density lipoprotein (LDL) levels achieve higher sustained virologic response (SVR) rates after peginterferon (PegIFN)/ribavirin treatment versus patients with lower LDL. Our aim was to determine whether SVR rates in patients with low/elevated LDL can be improved by dose intensification. STUDY: In PROGRESS, genotype 1 patients with baseline HCV RNA≥400,000 IU/mL and body weight ≥85 kg were randomized to 48 weeks of 180 μg/wk PegIFN α-2a (40 kDa) plus ribavirin (A: 1200 mg/d; B: 1400/1600 mg/d) or 12 weeks of 360 μg/wk PegIFN α-2a followed by 36 weeks of 180 μg/wk, plus ribavirin (C: 1200 mg/d; D: 1400/1600 mg/d). This retrospective analysis assessed SVR rates among patients with low (<100 mg/dL) or elevated (≥100 mg/dL) LDL. Patients with high LDL (n=256) had higher baseline HCV RNA (5.86×10 IU/mL) versus patients with low LDL (n=262; 4.02×10 IU/mL; P=0.0003). RESULTS: Multiple logistic regression analysis identified a significant interaction between PegIFN α-2a dose and LDL levels on SVR (P=0.0193). The only treatment-related SVR predictor in the nested multiple logistic regression was PegIFN α-2a dose among patients with elevated LDL (P=0.0074); therefore, data from the standard (A+B) and induction (C+D) dose arms were pooled. Among patients with low LDL, SVR rates were 40% and 35% in the standard and induction-dose groups, respectively; SVR rates in patients with high LDL were 44% and 60% (P=0.014), respectively. CONCLUSIONS: Intensified dosing of PegIFN α-2a increases SVR rates in patients with elevated LDL even with the difficult-to-cure characteristics of genotype 1, high baseline viral load, and high body weight. Copyright © 2013 by Lippincott Williams & Wilkins.
Resumo:
Copper (Cu) and its alloys are used extensively in domestic and industrial applications. Cu is also an essential element in mammalian nutrition. Since both copper deficiency and copper excess produce adverse health effects, the dose-response curve is U-shaped, although the precise form has not yet been well characterized. Many animal and human studies were conducted on copper to provide a rich database from which data suitable for modeling the dose-response relationship for copper may be extracted. Possible dose-response modeling strategies are considered in this review, including those based on the benchmark dose and categorical regression. The usefulness of biologically based dose-response modeling techniques in understanding copper toxicity was difficult to assess at this time since the mechanisms underlying copper-induced toxicity have yet to be fully elucidated. A dose-response modeling strategy for copper toxicity was proposed associated with both deficiency and excess. This modeling strategy was applied to multiple studies of copper-induced toxicity, standardized with respect to severity of adverse health outcomes and selected on the basis of criteria reflecting the quality and relevance of individual studies. The use of a comprehensive database on copper-induced toxicity is essential for dose-response modeling since there is insufficient information in any single study to adequately characterize copper dose-response relationships. The dose-response modeling strategy envisioned here is designed to determine whether the existing toxicity data for copper excess or deficiency may be effectively utilized in defining the limits of the homeostatic range in humans and other species. By considering alternative techniques for determining a point of departure and low-dose extrapolation (including categorical regression, the benchmark dose, and identification of observed no-effect levels) this strategy will identify which techniques are most suitable for this purpose. This analysis also serves to identify areas in which additional data are needed to better define the characteristics of dose-response relationships for copper-induced toxicity in relation to excess or deficiency.
Resumo:
Understanding the complex mechanisms underlying bone remodeling is crucial to the development of novel therapeutics. Glycosaminoglycans (GAGs) localised to the extracellular matrix (ECM) of bone are thought to play a key role in mediating aspects of bone development. The influence of isolated GAGs was studied by utilising in vitro murine calvarial monolayer and organ culture model systems. Addition of GAG preparations extracted from the cell surface of human osteoblasts at high concentrations (5 microg/ml) resulted in decreased proliferation of cells and decreased suture width and number of bone lining cells in calvarial sections. When we investigated potential interactions between the growth factors fibroblast growth factor-2 (FGF2), bone morphogenic protein-2 (BMP2) and transforming growth factor-beta1 (TGFbeta1) and the isolated cell surface GAGs, differences between the two model systems emerged. The cell culture system demonstrated a potentiating role for the isolated GAGs in the inhibition of FGF2 and TGFbeta1 actions. In contrast, the organ culture system demonstrated an enhanced stimulation of TFGbeta1 effects. These results emphasise the role of the ECM in mediating the interactions between GAGs and growth factors during bone development and suggest the GAG preparations contain potent inhibitory or stimulatory components able to mediate growth factor activity.
Resumo:
Once melanoma metastasizes, no effective treatment modalities prolong survival in most patients. This notorious refractoriness to therapy challenges investigators to identify agents that overcome melanoma resistance to apoptosis. Whereas many survival pathways contribute to the death-defying phenotype in melanoma, a defect in apoptotic machinery previously highlighted inactivation of Apaf-1, an apoptosome component engaged after mitochondrial damage. During studies involving Notch signaling in melanoma, we observed a gamma-secretase tripeptide inhibitor (GSI; z-Leu-Leu-Nle-CHO), selected from a group of compounds originally used in Alzheimer's disease, induced apoptosis in nine of nine melanoma lines. GSI only induced G2-M growth arrest (but not killing) in five of five normal melanocyte cultures tested. Effective killing of melanoma cells by GSI involved new protein synthesis and a mitochondrial-based pathway mediated by up-regulation of BH3-only members (Bim and NOXA). p53 activation was not necessary for up-regulation of NOXA in melanoma cells. Blocking GSI-induced NOXA using an antisense (but not control) oligonucleotide significantly reduced the apoptotic response. GSI also killed melanoma cell lines with low Apaf-1 levels. We conclude that GSI is highly effective in killing melanoma cells while sparing normal melanocytes. Direct enhancement of BH3-only proteins executes an apoptotic program overcoming resistance of this lethal tumor. Identification of a p53-independent apoptotic pathway in melanoma cells, including cells with low Apaf-1, bypasses an impediment to current cytotoxic therapy and provides new targets for future therapeutic trials involving chemoresistant tumors.