940 resultados para Distance-based techniques
Resumo:
Let us consider a large set of candidate parameter fields, such as hydraulic conductivity maps, on which we can run an accurate forward flow and transport simulation. We address the issue of rapidly identifying a subset of candidates whose response best match a reference response curve. In order to keep the number of calls to the accurate flow simulator computationally tractable, a recent distance-based approach relying on fast proxy simulations is revisited, and turned into a non-stationary kriging method where the covariance kernel is obtained by combining a classical kernel with the proxy. Once the accurate simulator has been run for an initial subset of parameter fields and a kriging metamodel has been inferred, the predictive distributions of misfits for the remaining parameter fields can be used as a guide to select candidate parameter fields in a sequential way. The proposed algorithm, Proxy-based Kriging for Sequential Inversion (ProKSI), relies on a variant of the Expected Improvement, a popular criterion for kriging-based global optimization. A statistical benchmark of ProKSI’s performances illustrates the efficiency and the robustness of the approach when using different kinds of proxies.
Novel Imaging-Based Techniques Reveal a Role for PD-1/PD-L1 in Tumor Immune Surveillance in the Lung
Resumo:
The binding of immune inhibitory receptor Programmed Death 1 (PD-1) on T cells to its ligand PD-L1 has been implicated as a major contributor to tumor induced immune suppression. Clinical trials of PD-L1 blockade have proven effective in unleashing therapeutic anti-tumor immune responses in a subset of patients with advanced melanoma, yet current response rates are low for reasons that remain unclear. Hypothesizing that the PD-1/PD-L1 pathway regulates T cell surveillance within the tumor microenvironment, we employed intravital microscopy to investigate the in vivo impact of PD-L1 blocking antibody upon tumor-associated immune cell migration. However, current analytical methods of intravital dynamic microscopy data lack the ability to identify cellular targets of T cell interactions in vivo, a crucial means for discovering which interactions are modulated by therapeutic intervention. By developing novel imaging techniques that allowed us to better analyze tumor progression and T cell dynamics in the microenvironment; we were able to explore the impact of PD-L1 blockade upon the migratory properties of tumor-associated immune cells, including T cells and antigen presenting cells, in lung tumor progression. Our results demonstrate that early changes in tumor morphology may be indicative of responsiveness to anti-PD-L1 therapy. We show that immune cells in the tumor microenvironment as well as tumors themselves express PD-L1, but immune phenotype alone is not a predictive marker of effective anti-tumor responses. Through a novel method in which we quantify T cell interactions, we show that T cells are largely engaged in interactions with dendritic cells in the tumor microenvironment. Additionally, we show that during PD-L1 blockade, non-activated T cells are recruited in greater numbers into the tumor microenvironment and engage more preferentially with dendritic cells. We further show that during PD-L1 blockade, activated T cells engage in more confined, immune synapse-like interactions with dendritic cells, as opposed to more dynamic, kinapse-like interactions with dendritic cells when PD-L1 is free to bind its receptor. By advancing the contextual analysis of anti-tumor immune surveillance in vivo, this study implicates the interaction between T cells and tumor-associated dendritic cells as a possible modulator in targeting PD-L1 for anti-tumor immunotherapy.
Resumo:
Una de las principales causas del ruido en nuestras ciudades es el tráfico rodado. El ruido generado por los vehículos no es sólo debido al motor, sino que existen diversas fuentes de ruido en los mismos, entre las que se puede destacar el ruido de rodadura. Para localizar las causas del ruido e identificar las principales fuentes del mismo se han utilizado en diversos estudios las técnicas de coherencia y las técnicas basadas en arrays. Sin embargo, en la bibliografía existente, no es habitual encontrar el uso de estas técnicas en el sector automovilístico. En esta tesis se parte de la premisa de la posibilidad de usar estas técnicas de medida en coches, para demostrar a la largo de la misma su factibilidad y su bondad para evaluar las fuentes de ruido en dos condiciones distintas: cuando el coche está parado y cuando está en movimiento. Como técnica de coherencia se elige la de Intensidad Selectiva, utilizándose la misma para evaluar la coherencia existente entre el ruido que llega a los oídos del conductor y la intensidad radiada por distintos puntos del motor. Para la localización de fuentes de ruido, las técnicas basadas en array son las que mejores resultados ofrecen. Statistically Optimized Near-field Acoustical Holography (SONAH) es la técnica elegida para la localización y caracterización de las fuentes de ruido en el motor a baja frecuencia. En cambio, Beamforming es la técnica seleccionada para el caso de media-alta frecuencia y para la evaluación de las fuentes de ruido cuando el coche se encuentra en movimiento. Las técnicas propuestas no sólo pueden utilizarse en medidas reales, sino que además proporcionan abundante información y frecen una gran versatilidad a la hora de caracterizar fuentes de ruido. ABSTRACT One of the most important noise causes in our cities is the traffic. The noise generated by the vehicles is not only due to the engine, but there are some other noise sources. Among them the tyre/road noise can be highlighted. Coherence and array based techniques have been used in some research to locate the noise causes and identify the main noise sources. Nevertheless, it is not usual in the literature to find the application of this kind of techniques in the car sector. This Thesis starts taking into account the possibility of using this kind of measurement techniques in cars, to demonstrate their feasability and their quality to evaluate the noise sources under two different conditions: when the car is stopped and when it is in movement. Selective Intensity was chosen as coherence technique, evaluating the coherence between the noise in the driver’s ears and the intensity radiated in different points of the engine. Array based techniques carry out the best results to noise source location. Statistically Optimized Near-field Acoustical Holography (SONAH) is the measurement technique chosen for noise source location and characterization in the engine at low frequency. On the other hand, Beamforming is the technique chosen in the case of medium-high frequency and to characterize the noise sources when the car is in movement. The proposed techniques not only can be used in actual measurements, but also provide a lot of information and are very versatile to noise source characterization.
Resumo:
The influence of the sample introduction system on the signals obtained with different tin compounds in inductively coupled plasma (ICP) based techniques, i.e., ICP atomic emission spectrometry (ICP–AES) and ICP mass spectrometry (ICP–MS) has been studied. Signals for test solutions prepared from four different tin compounds (i.e., tin tetrachloride, monobutyltin, dibutyltin and di-tert-butyltin) in different solvents (methanol 0.8% (w/w), i-propanol 0.8% (w/w) and various acid matrices) have been measured by ICP–AES and ICP–MS. The results demonstrate a noticeable influence of the volatility of the tin compounds on their signals measured with both techniques. Thus, in agreement with the compound volatility, the highest signals are obtained for tin tetrachloride followed by di-tert-butyltin/monobutyltin and dibutyltin. The sample introduction system exerts an important effect on the amount of solution loading the plasma and, hence, on the relative signals afforded by the tin compounds in ICP–based techniques. Thus, when working with a pneumatic concentric nebulizer, the use of spray chambers affording high solvent transport efficiency to the plasma (such as cyclonic and single pass) or high spray chamber temperatures is recommended to minimize the influence of the tin chemical compound. Nevertheless, even when using the conventional pneumatic nebulizer coupled to the best spray chamber design (i.e., a single pass spray chamber), signals obtained for di-tert-butyltin/monobutyltin and dibutyltin are still around 10% and 30% lower than the corresponding signal for tin tetrachloride, respectively. When operating with a pneumatic microconcentric nebulizer coupled to a 50 °C-thermostated cinnabar spray chamber, all studied organotin compounds provided similar emission signals although about 60% lower than those obtained for tin tetrachloride. The use of an ultrasonic nebulizer coupled to a desolvation device provides the largest differences in the emission signals, among all tested systems.
Resumo:
The elemental analysis of Spanish palm dates by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry is reported for the first time. To complete the information about the mineral composition of the samples, C, H, and N are determined by elemental analysis. Dates from Israel, Tunisia, Saudi Arabia, Algeria and Iran have also been analyzed. The elemental composition have been used in multivariate statistical analysis to discriminate the dates according to its geographical origin. A total of 23 elements (As, Ba, C, Ca, Cd, Co, Cr, Cu, Fe, H, In, K, Li, Mg, Mn, N, Na, Ni, Pb, Se, Sr, V, and Zn) at concentrations from major to ultra-trace levels have been determined in 13 date samples (flesh and seeds). A careful inspection of the results indicate that Spanish samples show higher concentrations of Cd, Co, Cr, and Ni than the remaining ones. Multivariate statistical analysis of the obtained results, both in flesh and seed, indicate that the proposed approach can be successfully applied to discriminate the Spanish date samples from the rest of the samples tested.
Resumo:
In this chapter we present the relevant mathematical background to address two well defined signal and image processing problems. Namely, the problem of structured noise filtering and the problem of interpolation of missing data. The former is addressed by recourse to oblique projection based techniques whilst the latter, which can be considered equivalent to impulsive noise filtering, is tackled by appropriate interpolation methods.
Resumo:
There are limitations in recent research undertaken on attribute reduction in incomplete decision systems. In this paper, we propose a distance-based method for attribute reduction in an incomplete decision system. In addition, we prove theoretically that our method is more effective than some other methods.
Resumo:
The paper attempts to develop a suitable accessibility index for networks where each link has a value such that a smaller number is preferred like distance, cost, or travel time. A measure called distance sum is characterized by three independent properties: anonymity, an appropriately chosen independence axiom, and dominance preservation, which requires that a node not far to any other is at least as accessible. We argue for the need of eliminating the independence property in certain applications. Therefore generalized distance sum, a family of accessibility indices, will be suggested. It is linear, considers the accessibility of vertices besides their distances and depends on a parameter in order to control its deviation from distance sum. Generalized distance sum is anonymous and satisfies dominance preservation if its parameter meets a sufficient condition. Two detailed examples demonstrate its ability to reflect the vulnerability of accessibility to link disruptions.
Resumo:
Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables full spectrum CT in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical eects in the detector and are very noisy due to photon starvation. In this work, we proposed two methods based on machine learning to address the spectral distortion issue and to improve the material decomposition. This rst approach is to model distortions using an articial neural network (ANN) and compensate for the distortion in a statistical reconstruction. The second approach is to directly correct for the distortion in the projections. Both technique can be done as a calibration process where the neural network can be trained using 3D printed phantoms data to learn the distortion model or the correction model of the spectral distortion. This replaces the need for synchrotron measurements required in conventional technique to derive the distortion model parametrically which could be costly and time consuming. The results demonstrate experimental feasibility and potential advantages of ANN-based distortion modeling and correction for more accurate K-edge imaging with a PCXD. Given the computational eciency with which the ANN can be applied to projection data, the proposed scheme can be readily integrated into existing CT reconstruction pipelines.
Resumo:
We propose a novel skeleton-based approach to gait recognition using our Skeleton Variance Image. The core of our approach consists of employing the screened Poisson equation to construct a family of smooth distance functions associated with a given shape. The screened Poisson distance function approximation nicely absorbs and is relatively stable to shape boundary perturbations which allows us to define a rough shape skeleton. We demonstrate how our Skeleton Variance Image is a powerful gait cycle descriptor leading to a significant improvement over the existing state of the art gait recognition rate.
Resumo:
Secure Multi-party Computation (MPC) enables a set of parties to collaboratively compute, using cryptographic protocols, a function over their private data in a way that the participants do not see each other's data, they only see the final output. Typical MPC examples include statistical computations over joint private data, private set intersection, and auctions. While these applications are examples of monolithic MPC, richer MPC applications move between "normal" (i.e., per-party local) and "secure" (i.e., joint, multi-party secure) modes repeatedly, resulting overall in mixed-mode computations. For example, we might use MPC to implement the role of the dealer in a game of mental poker -- the game will be divided into rounds of local decision-making (e.g. bidding) and joint interaction (e.g. dealing). Mixed-mode computations are also used to improve performance over monolithic secure computations. Starting with the Fairplay project, several MPC frameworks have been proposed in the last decade to help programmers write MPC applications in a high-level language, while the toolchain manages the low-level details. However, these frameworks are either not expressive enough to allow writing mixed-mode applications or lack formal specification, and reasoning capabilities, thereby diminishing the parties' trust in such tools, and the programs written using them. Furthermore, none of the frameworks provides a verified toolchain to run the MPC programs, leaving the potential of security holes that can compromise the privacy of parties' data. This dissertation presents language-based techniques to make MPC more practical and trustworthy. First, it presents the design and implementation of a new MPC Domain Specific Language, called Wysteria, for writing rich mixed-mode MPC applications. Wysteria provides several benefits over previous languages, including a conceptual single thread of control, generic support for more than two parties, high-level abstractions for secret shares, and a fully formalized type system and operational semantics. Using Wysteria, we have implemented several MPC applications, including, for the first time, a card dealing application. The dissertation next presents Wys*, an embedding of Wysteria in F*, a full-featured verification oriented programming language. Wys* improves on Wysteria along three lines: (a) It enables programmers to formally verify the correctness and security properties of their programs. As far as we know, Wys* is the first language to provide verification capabilities for MPC programs. (b) It provides a partially verified toolchain to run MPC programs, and finally (c) It enables the MPC programs to use, with no extra effort, standard language constructs from the host language F*, thereby making it more usable and scalable. Finally, the dissertation develops static analyses that help optimize monolithic MPC programs into mixed-mode MPC programs, while providing similar privacy guarantees as the monolithic versions.
Resumo:
This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.
Resumo:
Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.