987 resultados para Distance Function
Resumo:
The estimated parameters of output distance functions frequently violate the monotonicity, quasi-convexity and convexity constraints implied by economic theory, leading to estimated elasticities and shadow prices that are incorrectly signed, and ultimately to perverse conclusions concerning the effects of input and output changes on productivity growth and relative efficiency levels. We show how a Bayesian approach can be used to impose these constraints on the parameters of a translog output distance function. Implementing the approach involves the use of a Gibbs sampler with data augmentation. A Metropolis-Hastings algorithm is also used within the Gibbs to simulate observations from truncated pdfs. Our methods are developed for the case where panel data is available and technical inefficiency effects are assumed to be time-invariant. Two models-a fixed effects model and a random effects model-are developed and applied to panel data on 17 European railways. We observe significant changes in estimated elasticities and shadow price ratios when regularity restrictions are imposed. (c) 2004 Elsevier B.V. All rights reserved.
An improved conflicting evidence combination approach based on a new supporting probability distance
Resumo:
To avoid counter-intuitive result of classical Dempster's combination rule when dealing with highly conflict information, many improved combination methods have been developed through modifying the basic probability assignments (BPAs) of bodies of evidence (BOEs) by using a certain measure of the degree of conflict or uncertain information, such as Jousselme's distance, the pignistic probability distance and the ambiguity measure. However, if BOEs contain some non-singleton elements and the differences among their BPAs are larger than 0.5, the current conflict measure methods have limitations in describing the interrelationship among the conflict BOEs and may even lead to wrong combination results. In order to solve this problem, a new distance function, which is called supporting probability distance, is proposed to characterize the differences among BOEs. With the new distance, the information of how much a focal element is supported by the other focal elements in BOEs can be given. Also, a new combination rule based on the supporting probability distance is proposed for the combination of the conflicting evidences. The credibility and the discounting factor of each BOE are generated by the supporting probability distance and the weighted BOEs are combined directly using Dempster's rules. Analytical results of numerical examples show that the new distance has a better capability of describing the interrelationships among BOEs, especially for the highly conflicting BOEs containing non-singleton elements and the proposed new combination method has better applicability and effectiveness compared with the existing methods.
Resumo:
We propose a novel skeleton-based approach to gait recognition using our Skeleton Variance Image. The core of our approach consists of employing the screened Poisson equation to construct a family of smooth distance functions associated with a given shape. The screened Poisson distance function approximation nicely absorbs and is relatively stable to shape boundary perturbations which allows us to define a rough shape skeleton. We demonstrate how our Skeleton Variance Image is a powerful gait cycle descriptor leading to a significant improvement over the existing state of the art gait recognition rate.
Resumo:
Standard tools for the analysis of economic problems involving uncertainty, including risk premiums, certainty equivalents and the notions of absolute and relative risk aversion, are developed without making specific assumptions on functional form beyond the basic requirements of monotonicity, transitivity, continuity, and the presumption that individuals prefer certainty to risk. Individuals are not required to display probabilistic sophistication. The approach relies on the distance and benefit functions to characterize preferences relative to a given state-contingent vector of outcomes. The distance and benefit functions are used to derive absolute and relative risk premiums and to characterize preferences exhibiting constant absolute risk aversion (CARA) and constant relative risk aversion (CRRA). A generalization of the notion of Schur-concavity is presented. If preferences are generalized Schur concave, the absolute and relative risk premiums are generalized Schur convex, and the certainty equivalents are generalized Schur concave.
Resumo:
The present study investigated the influence of wrinkles on facial age judgments. In Experiment 1, preadolescents, young adults, and middle-aged adults made categorical age judgments for male and female faces. The qualitative (type of wrinkle) and quantitative (density of wrinkles and depth of furrows) contributions of wrinkles were analyzed. Results indicated that the greater the number of wrinkles and the depth of furrows, the older a face was rated. The roles of the gender of the face and the age of the participants were discussed. In Experiment 2, participants performed relative age judgments by comparing pairs of faces. Results revealed that the number of wrinkles had more influence on the perceived facial age than the type of wrinkle. A MDS analysis showed the main dimensions on which participants based their judgments, namely, the number of wrinkles and the depth of furrows. We conclude that the quantitative component is more likely to increase perceived facial age. Nevertheless, other variables, such as the gender of the face and the age of the participants, also seem to be involved in the age estimation process.
Resumo:
A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on a distance matrix. For a particular distance, these dimensions are principal components. Then some properties are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined and illustrated with copulas. It is shown that the dimension can have the power of continuum.
Resumo:
L’objectif à moyen terme de ce travail est d’explorer quelques formulations des problèmes d’identification de forme et de reconnaissance de surface à partir de mesures ponctuelles. Ces problèmes ont plusieurs applications importantes dans les domaines de l’imagerie médicale, de la biométrie, de la sécurité des accès automatiques et dans l’identification de structures cohérentes lagrangiennes en mécanique des fluides. Par exemple, le problème d’identification des différentes caractéristiques de la main droite ou du visage d’une population à l’autre ou le suivi d’une chirurgie à partir des données générées par un numériseur. L’objectif de ce mémoire est de préparer le terrain en passant en revue les différents outils mathématiques disponibles pour appréhender la géométrie comme variable d’optimisation ou d’identification. Pour l’identification des surfaces, on explore l’utilisation de fonctions distance ou distance orientée, et d’ensembles de niveau comme chez S. Osher et R. Fedkiw ; pour la comparaison de surfaces, on présente les constructions des métriques de Courant par A. M. Micheletti en 1972 et le point de vue de R. Azencott et A. Trouvé en 1995 qui consistent à générer des déformations d’une surface de référence via une famille de difféomorphismes. L’accent est mis sur les fondations mathématiques sous-jacentes que l’on a essayé de clarifier lorsque nécessaire, et, le cas échéant, sur l’exploration d’autres avenues.
Resumo:
In this paper we estimate a Translog output distance function for a balanced panel of state level data for the Australian dairy processing sector. We estimate a fixed effects specification employing Bayesian methods, with and without the imposition of monotonicity and curvature restrictions. Our results indicate that Tasmania and Victoria are the most technically efficient states with New South Wales being the least efficient. The imposition of theoretical restrictions marginally affects the results especially with respect to estimates of technical change and industry deregulation. Importantly, our bias estimates show changes in both input use and output mix that result from deregulation. Specifically, we find that deregulation has positively biased the production of butter, cheese and powders.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, we present a novel approach to perform similarity queries over medical images, maintaining the semantics of a given query posted by the user. Content-based image retrieval systems relying on relevance feedback techniques usually request the users to label relevant/irrelevant images. Thus, we present a highly effective strategy to survey user profiles, taking advantage of such labeling to implicitly gather the user perceptual similarity. The profiles maintain the settings desired for each user, allowing tuning of the similarity assessment, which encompasses the dynamic change of the distance function employed through an interactive process. Experiments on medical images show that the method is effective and can improve the decision making process during analysis.
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
Using the directional distance function we study a cross section of 110 countries to examine the efficiency of management of the tradeoffs between pollution and income. The DEA model is reformulated to permit 'reverse disposability' of the bad output. Further, we interpret the optimal solution of the multiplier form of the DEA model as an iso-inefficiency line. This permits us to measure the shadow cost of the bad output for a country that is in the interior, rather than on the frontier of the production possibilities set. We also compare the relative environmental performance of countries in terms of emission intensity adjusted for technical efficiency. Only 10% of the countries are found to be on the frontier. Also, there is considerable inter-country variation in the imputed opportunity cost of CO2 reduction. Further, differences in technical efficiency contribute substantially to differences in the observed levels of CO2 intensity.
Resumo:
A real-time large scale part-to-part video matching algorithm, based on the cross correlation of the intensity of motion curves, is proposed with a view to originality recognition, video database cleansing, copyright enforcement, video tagging or video result re-ranking. Moreover, it is suggested how the most representative hashes and distance functions - strada, discrete cosine transformation, Marr-Hildreth and radial - should be integrated in order for the matching algorithm to be invariant against blur, compression and rotation distortions: (R; _) 2 [1; 20]_[1; 8], from 512_512 to 32_32pixels2 and from 10 to 180_. The DCT hash is invariant against blur and compression up to 64x64 pixels2. Nevertheless, although its performance against rotation is the best, with a success up to 70%, it should be combined with the Marr-Hildreth distance function. With the latter, the image selected by the DCT hash should be at a distance lower than 1.15 times the Marr-Hildreth minimum distance.
Resumo:
This paper proposes an adaptive algorithm for clustering cumulative probability distribution functions (c.p.d.f.) of a continuous random variable, observed in different populations, into the minimum homogeneous clusters, making no parametric assumptions about the c.p.d.f.’s. The distance function for clustering c.p.d.f.’s that is proposed is based on the Kolmogorov–Smirnov two sample statistic. This test is able to detect differences in position, dispersion or shape of the c.p.d.f.’s. In our context, this statistic allows us to cluster the recorded data with a homogeneity criterion based on the whole distribution of each data set, and to decide whether it is necessary to add more clusters or not. In this sense, the proposed algorithm is adaptive as it automatically increases the number of clusters only as necessary; therefore, there is no need to fix in advance the number of clusters. The output of the algorithm are the common c.p.d.f. of all observed data in the cluster (the centroid) and, for each cluster, the Kolmogorov–Smirnov statistic between the centroid and the most distant c.p.d.f. The proposed algorithm has been used for a large data set of solar global irradiation spectra distributions. The results obtained enable to reduce all the information of more than 270,000 c.p.d.f.’s in only 6 different clusters that correspond to 6 different c.p.d.f.’s.