993 resultados para Dispersed repetitive sequence family


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many families of interspersed repetitive DNA elements, including human Alu and LINE (Long Interspersed Element) elements, have been proposed to have accumulated through repeated copying from a single source locus: the "master gene." The extent to which a master gene model is applicable has implications for the origin, evolution, and function of such sequences. One repetitive element family for which a convincing case for a master gene has been made is the rodent ID (identifier) elements. Here we devise a new test of the master gene model and use it to show that mouse ID element sequences are not compatible with a strict master gene model. We suggest that a single master gene is rarely, if ever, likely to be responsible for the accumulation of any repeat family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leporinus elongatus represents an interesting model for studies on chromosome evolution since it possesses a conspicuous ZZ/ZW sex chromosome system that has been characterized mainly by basic cytogenetic techniques. In the present study we describe a dispersed repetitive element ( named Le SpeI) related to the sex chromosomes of L. elongatus. Females revealed clusters of Le SpeI on the long arm of the W chromosome and in the acrocentric NOR-bearing chromosome pair. In males, the signal was restricted to the pericentromeric region of the NOR-bearing chromosomes. Considering the results obtained in the present study using FISH, NOR and C-banding, together with findings from previous studies, it can be inferred that the sex chromosome system of L. elongatus is still undergoing an evolutionary process. The data suggest novelties in relation to the sex chromosomes of the genus Leporinus with the description of a multiple sex chromosome system involving the NOR-bearing chromosomes. Therefore, it is hypothesized that the simple ZW chromosome system previously described for L. elongatus rather is a multiple Z(1)Z(1)Z(2)Z(2)/Z(1)W(1)Z(2)W(2) system. Copyright (c) 2007 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosome mapping and studies of the genomic organization of repetitive DNA sequences provide valuable insights that enhance our evolutionary and structural understanding of these sequences, as well as identifying chromosomal rearrangements and sex determination. This study investigated the occurrence and organization of repetitive DNA sequences in Leporinus elongatus using restriction enzyme digestion and the mapping of sequences by chromosomal fluorescence in situ hybridization (FISH). A 378-bp fragment with a 54.2% GC content was isolated after digestion with the SmaI restriction enzyme. BLASTN search found no similarity with previously described sequences, so this repetitive sequence was named LeSmaI. FISH experiments were conducted using L. elongatus and other Anostomidae species, i.e. L. macrocephalus,L. obtusidens, L. striatus, L. lacustris, L. friderici, Schizodon borellii, S. isognathus, and Abramites hypselonotus which detected signals that were unique to male and female L. elongatus individuals. Double-FISH using LeSmaI and 18S rDNA showed that LeSmaI was located in a nucleolus organizer region (NOR) in the male and female metaphases of L. elongatus. This report also discusses the role of repetitive DNA associated with NORs in the diversification of Anostomidae species karyotypes. Copyright © 2012 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background A large number of probabilistic models used in sequence analysis assign non-zero probability values to most input sequences. To decide when a given probability is sufficient the most common way is bayesian binary classification, where the probability of the model characterizing the sequence family of interest is compared to that of an alternative probability model. We can use as alternative model a null model. This is the scoring technique used by sequence analysis tools such as HMMER, SAM and INFERNAL. The most prevalent null models are position-independent residue distributions that include: the uniform distribution, genomic distribution, family-specific distribution and the target sequence distribution. This paper presents a study to evaluate the impact of the choice of a null model in the final result of classifications. In particular, we are interested in minimizing the number of false predictions in a classification. This is a crucial issue to reduce costs of biological validation. Results For all the tests, the target null model presented the lowest number of false positives, when using random sequences as a test. The study was performed in DNA sequences using GC content as the measure of content bias, but the results should be valid also for protein sequences. To broaden the application of the results, the study was performed using randomly generated sequences. Previous studies were performed on aminoacid sequences, using only one probabilistic model (HMM) and on a specific benchmark, and lack more general conclusions about the performance of null models. Finally, a benchmark test with P. falciparum confirmed these results. Conclusions Of the evaluated models the best suited for classification are the uniform model and the target model. However, the use of the uniform model presents a GC bias that can cause more false positives for candidate sequences with extreme compositional bias, a characteristic not described in previous studies. In these cases the target model is more dependable for biological validation due to its higher specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer/testis (CT) antigens—immunogenic protein antigens that are expressed in testis and a proportion of diverse human cancer types—are promising targets for cancer vaccines. To identify new CT antigens, we constructed an expression cDNA library from a melanoma cell line that expresses a wide range of CT antigens and screened the library with an allogeneic melanoma patient serum known to contain antibodies against two CT antigens, MAGE-1 and NY-ESO-1. cDNA clones isolated from this library identified four CT antigen genes: MAGE-4a, NY-ESO-1, LAGE-1, and CT7. Of these four, only MAGE-4a and NY-ESO-1 proteins had been shown to be immunogenic. LAGE-1 is a member of the NY-ESO-1 gene family, and CT7 is a newly defined gene with partial sequence homology to the MAGE family at its carboxyl terminus. The predicted CT7 protein, however, contains a distinct repetitive sequence at the 5′ end and is much larger than MAGE proteins. Our findings document the immunogenicity of LAGE-1 and CT7 and emphasize the power of serological analysis of cDNA expression libraries in identifying new human tumor antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Euplotes crassus, most of the micronuclear genome is eliminated during formation of a transcriptionally active macronucleus. To understand how this is mediated throughout the genome, we have examined the chromatin structure of the macronucleus-destined sequences and Tec transposons, which are dispersed in 15,000 copies in the micronuclear genome and completely eliminated during formation of the macronuclear genome. Whereas the macronucleus-destined sequences show a typical pattern of nucleosomal repeats in micrococcal nuclease digests, the Tec element chromatin structure digests to a nucleosome-like repeat pattern that is not typical: the minimum digestion products are ∼300–600 base pairs, or “subnucleosomal,” in size. In addition, the excised, circular forms of the Tec elements are exceedingly resistant to nucleases. Nevertheless, an underlying nucleosomal structure of the Tec elements can be demonstrated from the size differences between repeats in partial micrococcal nuclease digests and by trypsin treatment of nuclei, which results in mononucleosome-sized products. Characterization of the most micrococcal nuclease–resistant DNA indicates that micronuclear telomeres are organized into a chromatin structure with digestion properties identical to those of the Tec elements in the developing macronucleus. Thus, these major repetitive sequence components of the micronuclear genome differ in their chromatin structure from the macronuclear-destined sequences during DNA elimination. The potential role of developmental stage–specific histone variants in this chromatin differentiation is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, two tools, one drawn from information theory and the other from artificial neural networks, have proven particularly useful in many different areas of sequence analysis. The work presented herein indicates that these two approaches can be joined in a general fashion to produce a very powerful search engine that is capable of locating members of a given nucleic acid sequence family in either local or global sequence searches. This program can, in turn, be queried for its definition of the motif under investigation, ranking each base in context for its contribution to membership in the motif family. In principle, the method used can be applied to any binding motif, including both DNA and RNA sequence families, given sufficient family size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rearrangements between tandem sequence homologies of various lengths are a major source of genomic change and can be deleterious to the organism. These rearrangements can result in either deletion or duplication of genetic material flanked by direct sequence repeats. Molecular genetic analysis of repetitive sequence instability in Escherichia coli has provided several clues to the underlying mechanisms of these rearrangements. We present evidence for three mechanisms of RecA-independent sequence rearrangements: simple replication slippage, sister-chromosome exchange-associated slippage, and single-strand annealing. We discuss the constraints of these mechanisms and contrast their properties with RecA-dependent homologous recombination. Replication plays a critical role in the two slipped misalignment mechanisms, and difficulties in replication appear to trigger rearrangements via all these mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xanthomonas axonopodis pv. passiflorae causes bacterial spot in passion fruit. It attacks the purple and yellow passion fruit as well as the sweet passion fruit. The diversity of 87 isolates of pv. passiflorae collected from across 22 fruit orchards in Brazil was evaluated using molecular profiles and statistical procedures, including an unweighted pair-group method with arithmetical averages-based dendrogram, analysis of molecular variance (AMOVA), and an assigning test that provides information on genetic structure at the population level. Isolates from another eight pathovars were included in the molecular analyses and all were shown to have a distinct repetitive sequence-based polymerase chain reaction profile. Amplified fragment length polymorphism technique revealed considerable diversity among isolates of pv. passiflorae, and AMOVA showed that most of the variance (49.4%) was due to differences between localities. Cluster analysis revealed that most genotypic clusters were homogeneous and that variance was associated primarily with geographic origin. The disease adversely affects fruit production and may kill infected plants. A method for rapid diagnosis of the pathogen, even before the disease symptoms become evident, has value for producers. Here, a set of primers (Xapas) was designed by exploiting a single-nucleotide polymorphism between the sequences of the intergenic 16S-23S rRNA spacer region of the pathovars. Xapas was shown to effectively detect all pv. passiflorae isolates and is recommended for disease diagnosis in passion fruit orchards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cylindrospermopsis raciborskii is a toxic-bloom-forming cyanobacterium that is commonly found in tropical to subtropical climatic regions worldwide, but it is also recognized as a common component of cyanobacterial communities in temperate climates. Genetic profiles of C. raciborskii were examined in 19 cultured isolates originating from geographically diverse regions of Australia and represented by two distinct morphotypes. A 609-bp region of rpoC1, a DNA-dependent RNA polymerase gene, was amplified by PCR from these isolates with cyanobacterium-specific primers. Sequence analysis revealed that all isolates belonged to the same species, including morphotypes with straight or coiled trichomes. Additional rpoC1 gene sequences obtained for a range of cyanobacteria highlighted clustering of C. raciborskii with other heterocyst-producing cyanobacteria (orders Nostocales and Stigonematales). In contrast, randomly amplified polymorphic DNA and short tandemly repeated repetitive sequence profiles revealed a greater level of genetic heterogeneity among C. raciborskii isolates than did rpoC1 gene analysis, and unique band profiles were also found among each of the cyanobacterial genera examined. A PCR test targeting a region of the rpoC1 gene unique to C. raciborskii was developed for the specific identification of C. raciborskii from both purified genomic DNA and environmental samples. The PCR was evaluated with a number of cyanobacterial isolates, but a PCR-positive result was only achieved with C, raciborskii. This method provides an accurate alternative to traditional morphological identification of C. raciborskii.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several members of the Rubiaceae and Violaceae families produce a series of cycloticles or macrocyclic peptides of 29-31 amino acids with an embedded cystine knot. We aim to understand the mechanism of synthesis of cyclic peptides in plants and have isolated a cDNA clone that encodes the cyclotide kalata Ell as well as three other clones for related cycloticles from the African plant Olden-landia affinis. The cDNA clones encode prepropeptides with a 20-aa signal sequence, an N-terminal prosequence of 46-68 amino acids and one, two, or three cyclotide domains separated by regions of about 25 aa. The corresponding cycloticles have been isolated from plant material, indicating that the cyclotide domains are excised and cyclized from all four predicted precursor proteins. The exact processing site is likely to lie on the N-terminal side of the strongly conserved GlyLeuPro or SerLeuPro sequence that flanks both sides of the cyclotide domain. Cyclotides have previously been assigned an antimicrobial function; here we describe a potent inhibitory effect on the growth and development of larvae from the Lepidopteran species Helicoverpa punctigera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate diagnosis of Babesia bigemina infection, an economically important tick-transmitted protozoan parasite of cattle, is essential in the management of disease control and in epidemiological studies. The currentlyused methods of diagnosis are blood smear examination and serological tests which include agglutination and immunofluorescence tests. These testes have been used the fild but because they lack sensitivity and specificity, never and improved methods of diagnosis are being developed. The quantitative buffy coat (OBC) method, using microhaematocrit tubes and acridine orange staining allows rapid and quicker diagnosis of B. bigemina and other blood parasites compared to light microscopic examination of stained smears. Parasite specific monoclonal antibodies have been used in antigen/antibody capture enzymelinked immunosorbent assays with grater sensitivity and specificity than previously described serological tests. Similary, DNA probes, derived from a repetitive sequence of the B. bigemina genome, offer a method of detecting very small numbers of parasites which are undetectable by conventional microscopy. An extrachromosomal DNA element, present in all the tick-borne protozoan parasites so far tested, provides an accurate means of diferentiating mixed parasite populations in infected animals. These improved methods will greatly facilitate epidemiological studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of in situ techniques to detect DNA and RNA sequences has proven to be an invaluable technique with paraffin-embedded tissue. Advances in non-radioactive detection systems have further made these procedures shorter and safer. We report the detection of Trypanosoma cruzi, the causative agent of Chagas disease, via indirect and direct in situ polymerace chain reaction within paraffin-embedded murine cardiac tissue sections. The presence of three T. cruzi specific DNA sequences were evaluated: a 122 base pair (bp) sequence localized within the minicircle network, a 188 bp satellite nuclear repetitive sequence and a 177 bp sequence that codes for a flagellar protein. In situ hybridization alone was sensitive enough to detect all three T. cruzi specific DNA sequences.