928 resultados para Discrete-time control
Resumo:
In this paper we consider the existence of the maximal and mean square stabilizing solutions for a set of generalized coupled algebraic Riccati equations (GCARE for short) associated to the infinite-horizon stochastic optimal control problem of discrete-time Markov jump with multiplicative noise linear systems. The weighting matrices of the state and control for the quadratic part are allowed to be indefinite. We present a sufficient condition, based only on some positive semi-definite and kernel restrictions on some matrices, under which there exists the maximal solution and a necessary and sufficient condition under which there exists the mean square stabilizing solution fir the GCARE. We also present a solution for the discounted and long run average cost problems when the performance criterion is assumed be composed by a linear combination of an indefinite quadratic part and a linear part in the state and control variables. The paper is concluded with a numerical example for pension fund with regime switching.
Resumo:
In this paper we obtain the linear minimum mean square estimator (LMMSE) for discrete-time linear systems subject to state and measurement multiplicative noises and Markov jumps on the parameters. It is assumed that the Markov chain is not available. By using geometric arguments we obtain a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the error covariance matrix of the LMMSE to a stationary value under the assumption of mean square stability of the system and ergodicity of the associated Markov chain is obtained. It is shown that there exists a unique positive semi-definite solution for the stationary Riccati-like filter equation and, moreover, this solution is the limit of the error covariance matrix of the LMMSE. The advantage of this scheme is that it is very easy to implement and all calculations can be performed offline. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We develop an extension to the tactical planning model (TPM) for a job shop by the third author. The TPM is a discrete-time model in which all transitions occur at the start of each time period. The time period must be defined appropriately in order for the model to be meaningful. Each period must be short enough so that a job is unlikely to travel through more than one station in one period. At the same time, the time period needs to be long enough to justify the assumptions of continuous workflow and Markovian job movements. We build an extension to the TPM that overcomes this restriction of period sizing by permitting production control over shorter time intervals. We achieve this by deriving a continuous-time linear control rule for a single station. We then determine the first two moments of the production level and queue length for the workstation.
Resumo:
La tesis pretende explorar acercamientos computacionalmente confiables y eficientes de contractivo MPC para sistemas de tiempo discreto. Dos tipos de contractivo MPC han sido estudiados: MPC con coacción contractiva obligatoria y MPC con una secuencia contractiva de conjuntos controlables. Las técnicas basadas en optimización convexa y análisis de intervalos son aplicadas para tratar MPC contractivo lineal y no lineal, respectivamente. El análisis de intervalos clásicos es ampliado a zonotopes en la geometría para diseñar un conjunto invariante de control terminal para el modo dual de MPC. También es ampliado a intervalos modales para tener en cuenta la modalidad al calcula de conjuntos controlables robustos con una interpretación semántica clara. Los instrumentos de optimización convexa y análisis de intervalos han sido combinados para mejorar la eficacia de contractive MPC para varias clases de sistemas de tiempo discreto inciertos no lineales limitados. Finalmente, los dos tipos dirigidos de contractivo MPC han sido aplicados para controlar un Torneo de Fútbol de Copa Mundial de Micro Robot (MiroSot) y un Tanque-Reactor de Mezcla Continua (CSTR), respectivamente.
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
This paper considers PID control in terms of its implementation by means of an ARMA plant model. Two controller actions are considered, namely pole placement and deadbeat, both being applied via a PID structure for the adaptive real-time control of an industrial level system. As well as looking at two controller types separately, a comparison is made between the forms and it is shown how, under certain circumstances, the two forms can be seen to be identical. It is shown how the pole-placement PID form does not in fact realise an action which is equivalent to the deadbeat controller, when all closed-loop poles are chosen to be at the origin of the z-plane.
Resumo:
The Routh-stability method is employed to reduce the order of discrete-time system transfer functions. It is shown that the Routh approximant is well suited to reduce both the denominator and the numerator polynomials, although alternative methods, such as PadÃ�Â(c)-Markov approximation, are also used to fit the model numerator coefficients.
Resumo:
The presence of mismatch between controller and system is considered. A novel discrete-time approach is used to investigate the migration of closed-loop poles when this mismatch occurs. Two forms of state estimator are employed giving rise to several interesting features regarding stability and performance.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper is concerned with ℋ 2 and ℋ ∞ filter design for discrete-time Markov jump systems. The usual assumption of mode-dependent design, where the current Markov mode is available to the filter at every instant of time is substituted by the case where that availability is subject to another Markov chain. In other words, the mode is transmitted to the filter through a network with given transmission failure probabilities. The problem is solved by modeling a system with N modes as another with 2N modes and cluster availability. We also treat the case where the transition probabilities are not exactly known and demonstrate our conditions for calculating an ℋ ∞ norm bound are less conservative than the available results in the current literature. Numerical examples show the applicability of the proposed results. ©2010 IEEE.
Resumo:
Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.
Resumo:
In this paper, an interleaved multiphase buck converter with minimum time control strategy for envelope amplifiers in high efficiency RF power amplifiers is proposed. The solution for the envelope amplifier is to combine the proposed converter with a linear regulator in series. High efficiency of envelope amplifier can be obtained through modulating the supply voltage of the linear regulator. Instead of tracking the envelope, the buck converter has discrete output voltage that corresponding to particular duty cycles which achieve total ripple cancellation. The transient model for minimum time control is explained, and the calculation of transient times that are pre-calculated and inserted into a lookup table is presented. The filter design trade-off that limits capability of envelope modulation is also discussed. The experimental results verify the fast voltage transient obtained with a 4-phase buck prototype.
Resumo:
Power amplifier supplied with constant supply voltage has very low efficiency in the transmitter. A DC-DC converter in series with a linear regulator can be used to obtain voltage modulation. Since this converter should be able to change the output voltage very fast, a multiphase buck converter with a minimum time control strategy is proposed. To modulate supply voltage of the envelope amplifier, the multiphase converter works with some particular duty cycle (i/n, i=1, 2 ... n, n is the number of phase) to generate discrete output voltages, and in these duty cycles the output current ripple can be completely cancelled. The transition times for the minimum time are pre-calculated and inserted in a look-up table. The theoretical background, the system model that is necessary in order to calculate the transition times and the experimental results obtained with a 4-phase buck prototype are given
Resumo:
In this work is addressed the topic of estimation of velocity and acceleration from digital position data. It is presented a review of several classic methods and implemented with real position data from a low cost digital sensor of a hydraulic linear actuator. The results are analyzed and compared. It is shown that static methods have a limited bandwidth application, and that the performance of some methods may be enhanced by adapting its parameters according to the current state.
Resumo:
We consider a problem of robust performance analysis of linear discrete time varying systems on a bounded time interval. The system is represented in the state-space form. It is driven by a random input disturbance with imprecisely known probability distribution; this distributional uncertainty is described in terms of entropy. The worst-case performance of the system is quantified by its a-anisotropic norm. Computing the anisotropic norm is reduced to solving a set of difference Riccati and Lyapunov equations and a special form equation.