901 resultados para Discrete Sliding Mode Control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern wind turbines are designed in order to work in variable speed operations. To perform this task, wind turbines are provided with adjustable speed generators, like the double feed induction generator. One of the main advantage of adjustable speed generators is improving the system efficiency compared to fixed speed generators, because turbine speed can be adjusted as a function of wind speed in order to maximize the output power. However this system requires a suitable speed controller in order to track the optimal reference speed of the wind turbine. In this work, a sliding mode control for variable speed wind turbines is proposed. An integral sliding surface is used, because the integral term avoids the use of the acceleration signal, which reduces the high frequency components in the sliding variable. The proposed design also uses the vector oriented control theory in order to simplify the generator dynamical equations. The stability analysis of the proposed controller has been carried out under wind variations and parameter uncertainties by using the Lyapunov stability theory. Finally simulated results show, on the one hand that the proposed controller provides a high-performance dynamic behavior, and on the other hand that this scheme is robust with respect to parameter uncertainties and wind speed variations, that usually appear in real systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EFTA 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many photovoltaic inverter designs make use of a buck based switched mode power supply (SMPS) to produce a rectified sinusoidal waveform. This waveform is then unfolded by a low frequency switching structure to produce a fully sinusoidal waveform. The Cuk SMPS could offer advantages over the buck in such applications. Unfortunately the Cuk converter is considered to be difficult to control using classical methods. Correct closed loop design is essential for stable operation of Cuk converters. Due to these stability issues, Cuk converter based designs often require stiff low bandwidth control loops. In order to achieve this stable closed loop performance, traditional designs invariably need large, unreliable electrolytic capacitors. In this paper, an inverter with a sliding mode control approach is presented which enables the designer to make use of the Cuk converters advantages, while ameliorating control difficulties. This control method allows the selection of passive components based predominantly on ripple and reliability specifications while requiring only one state reference signal. This allows much smaller, more reliable non-electrolytic capacitors to be used. A prototype inverter has been constructed and results obtained which demonstrate the design flexibility of the Cuk topology when coupled with sliding mode control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, sliding-mode-control-based guidance laws to intercept stationary, constant-velocity, and maneuvering targets at a desired impact angle are proposed. The desired impact angle, which is defined in terms of a desired line-of-sight angle, is achieved in finite time by selecting the missile's lateral acceleration to enforce terminal sliding mode on a switching surface designed using nonlinear engagement dynamics. The conditions for capturability are also presented. In addition, by considering a three-degree-of-freedom linear-interceptor dynamic model and by following the procedure used to design a dynamic sliding-mode controller, the interceptor autopilot is designed as a simple static controller to track the lateral acceleration generated by the guidance law. Numerical simulation results are presented to validate the proposed guidance laws and the autopilot design for different initial engagement geometries and impact angles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper guidance laws to intercept stationary and constant velocity targets at a desired impact angle, based on sliding mode control theory, are proposed. The desired impact angle, which is defined in terms of a desired line-of-sight (LOS) angle, is achieved in finite time by selecting the missile's lateral acceleration (latax) to enforce non-singular terminal sliding mode on a switching surface designed using this desired LOS angle and based on non-linear engagement dynamics. Numerical simulation results are presented to validate the proposed guidance laws for different initial engagement geometries and impact angles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sliding mode position control for high-performance real-time applications of induction motors in developed in this work. The design also incorporates a simple flux estimator in order to avoid the flux sensors. Then, the proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost DSP-processor. The stability analysis of the controller under parameter uncertainties and load disturbances in provided using Lyapunov stability theory. Finally, simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend current research in the area of 'sensorless' control of induction motors by presenting two observers based on first- and second-order sliding mode control theories for the simultaneous estimation of flux and speed. We base the observers on the stator-flux model of the motor instead of the usual rotor-flux model mainly because of the uncertain rotor resistance that plays a significant role in the latter. By designing the observers as if they are sliding mode controllers, we lend the properties of parameter insensitive closed-loop dynamics and finite time convergence to the stator flux and speed estimation schemes. We also present simulation and experimental results to validate the operation of the observers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a second order sliding mode observer (SOSMO) design for discrete time uncertain linear multi-output system. The design procedure is effective for both matched and unmatched bounded uncertainties and/or disturbances. A second order sliding function and corresponding sliding manifold for discrete time system are defined similar to the lines of continuous time counterpart. A boundary layer concept is employed to avoid switching across the defined sliding manifold and the sliding trajectory is confined to a boundary layer once it converges to it. The condition for existence of convergent quasi-sliding mode (QSM) is derived. The observer estimation errors satisfying given stability conditions converge to an ultimate finite bound (within the specified boundary layer) with thickness O(T-2) where T is the sampling period. A relation between sliding mode gain and boundary layer is established for the existence of second order discrete sliding motion. The design strategy is very simple to apply and is demonstrated for three examples with different class of disturbances (matched and unmatched) to show the effectiveness of the design. Simulation results to show the robustness with respect to the measurement noise are given for SOSMO and the performance is compared with pseudo-linear Kalman filter (PLKF). (C) 2013 Published by Elsevier Ltd. on behalf of The Franklin Institute