898 resultados para Discrete Regression and Qualitative Choice Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing pressure on crop production from the evolution of herbicide resistance, farmers are increasingly adopting Integrated Weed Management (IWM) strategies to augment their weed control. These include measures to increase the competitiveness of the crop canopy such as increased sowing rate and the use of more competitive cultivars. While there are data on the relative impact of these non-chemical weed control methods assessed in isolation, there is uncertainty about their combined contribution, which may be hindering their adoption. In this article, the INTERCOM simulation model of crop / weed competition was used to examine the combined impact of crop density, sowing date and cultivar choice on the outcomes of competition between wheat (Triticum aestivum) and Alopecurus myosuroides. Alopecurus myosuroides is a problematic weed of cereal crops in North-Western Europe and the primary target for IWM in the UK because it has evolved resistance to a range of herbicides. The model was parameterised for two cultivars with contrasting competitive ability, and simulations run across 10 years at different crop densities and two sowing dates. The results suggest that sowing date, sowing density and cultivar choice largely work in a complementary fashion, allowing enhanced competitive ability against weeds when used in combination. However, the relative benefit of choosing a more competitive cultivar decreases at later sowing dates and higher crop densities. Modelling approaches could be further employed to examine the effectiveness of IWM, reducing the need for more expensive and cumbersome long-term in situ experimentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we derive score test statistics to discriminate between proportional hazards and proportional odds models for grouped survival data. These models are embedded within a power family transformation in order to obtain the score tests. In simple cases, some small-sample results are obtained for the score statistics using Monte Carlo simulations. Score statistics have distributions well approximated by the chi-squared distribution. Real examples illustrate the proposed tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concerns of Thai consumers on food safety have been recently increasing, especially in urban areas and for fresh produce because food safety scandals, such as chemical residues on fresh produce (e.g., cabbage) still frequently occur. The Thai government tried to meet consumer needs by imposing in the domestic market a stronger regulation aimed at increasing the baseline level of food safety assurance and by introducing a voluntary standard (based on Good Agricultural Practices or GAPs and known as Q-GAP) and the related food safety label (i.e., Q mark). However, since standards and regulations are weakly implemented in the domestic market compared to exported products, there is still a lack of Thai consumers’ confidence in the safety of local food products. In this work the current situation of GAPs adoption in Thai fresh produce production is analysed. Furthermore, it is studied whether Thai consumers place value on food safety labels available on the market, to know whether consumer demand could drive the market of certified safer products. This study contains three essays: 1) a review of the literature, 2) a qualitative study on stakeholders' perception toward GAPs adoption and 3) a quantitative study, aimed at analysing consumers' preferences and willingness-to-pay for food safety labels on fresh produce using a discrete choice experiment. This dissertation contributes to the economics of quality assurance and labelling, specifically addressing GAPs and food safety label in the fresh produce supply chain. Results show that Q-GAP could be effectively used to improve food safety in Thai domestic market, but its credibility should be improved. Stakeholder’s awareness toward food safety issues and the delivery of reliable and sound information are crucial. Thai consumers are willing to pay a premium price for food safety labelled produce over unlabelled ones. Implications for both government and business decision-makers are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant human erythropoietin (rHuEpo) has been used successfully in the treatment of cancer-related anemia. Clinical observations with several patients with multiple-myeloma treated with rHuEpo has shown, in addition to the improved quality of life, a longer survival than expected, considering the poor prognostic features of these patients. Based on these observations, we evaluated the potential biological effects of rHuEpo on the course of tumor progression by using murine myeloma models (MOPC-315-IgAλ2 and 5T33 MM-IgG2b). Here we report that daily treatment of MOPC-315 tumor-bearing mice with rHuEpo for several weeks induced complete tumor regression in 30–60% of mice. All regressors that were rechallenged with tumor cells rejected tumor growth, and this resistance was tumor specific. The Epo-triggered therapeutic effect was shown to be attributed to a T cell-mediated mechanism. Serum Ig analysis indicated a reduction in MOPC-315 λ light chain in regressor mice. Intradermal inoculation of 5T33 MM tumor cells followed by Epo treatment induced tumor regression in 60% of mice. The common clinical manifestation of myeloma bone disease in patients with multiple-myeloma was established in these myeloma models. Epo administration to these tumor-bearing mice markedly prolonged their survival and reduced mortality. Therefore, erythropoietin seems to act as an antitumor therapeutic agent in addition to its red blood cell-stimulating activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of regression under Gaussian assumptions is treated generally. The relationship between Bayesian prediction, regularization and smoothing is elucidated. The ideal regression is the posterior mean and its computation scales as O(n3), where n is the sample size. We show that the optimal m-dimensional linear model under a given prior is spanned by the first m eigenfunctions of a covariance operator, which is a trace-class operator. This is an infinite dimensional analogue of principal component analysis. The importance of Hilbert space methods to practical statistics is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs/GAMs modeling: from species distribution to environmental management, held in Riederalp, Switzerland, 6-11 August 2001.We first discuss some general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of predictors, and methods for the identification of interactions by a combined use of regression trees and several other approaches. We close with an overview of the papers and how we feel they advance our understanding of their application to ecological modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first generation models of currency crises have often been criticized because they predict that, in the absence of very large triggering shocks, currency attacks should be predictable and lead to small devaluations. This paper shows that these features of first generation models are not robust to the inclusion of private information. In particular, this paper analyzes a generalization of the Krugman-Flood-Garber (KFG) model, which relaxes the assumption that all consumers are perfectly informed about the level of fundamentals. In this environment, the KFG equilibrium of zero devaluation is only one of many possible equilibria. In all the other equilibria, the lack of perfect information delays the attack on the currency past the point at which the shadow exchange rate equals the peg, giving rise to unpredictable and discrete devaluations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Learning Affect Monitor (LAM) is a new computer-based assessment system integrating basic dimensional evaluation and discrete description of affective states in daily life, based on an autonomous adapting system. Subjects evaluate their affective states according to a tridimensional space (valence and activation circumplex as well as global intensity) and then qualify it using up to 30 adjective descriptors chosen from a list. The system gradually adapts to the user, enabling the affect descriptors it presents to be increasingly relevant. An initial study with 51 subjects, using a 1 week time-sampling with 8 to 10 randomized signals per day, produced n = 2,813 records with good reliability measures (e.g., response rate of 88.8%, mean split-half reliability of .86), user acceptance, and usability. Multilevel analyses show circadian and hebdomadal patterns, and significant individual and situational variance components of the basic dimension evaluations. Validity analyses indicate sound assignment of qualitative affect descriptors in the bidimensional semantic space according to the circumplex model of basic affect dimensions. The LAM assessment module can be implemented on different platforms (palm, desk, mobile phone) and provides very rapid and meaningful data collection, preserving complex and interindividually comparable information in the domain of emotion and well-being.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme. (C) 2007 Elsevier B.V. All rights reserved.