952 resultados para Digital elevation model (DEM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2005/1013/thumbnail.jpg

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital elevation model (DEM) plays a substantial role in hydrological study, from understanding the catchment characteristics, setting up a hydrological model to mapping the flood risk in the region. Depending on the nature of study and its objectives, high resolution and reliable DEM is often desired to set up a sound hydrological model. However, such source of good DEM is not always available and it is generally high-priced. Obtained through radar based remote sensing, Shuttle Radar Topography Mission (SRTM) is a publicly available DEM with resolution of 92m outside US. It is a great source of DEM where no surveyed DEM is available. However, apart from the coarse resolution, SRTM suffers from inaccuracy especially on area with dense vegetation coverage due to the limitation of radar signals not penetrating through canopy. This will lead to the improper setup of the model as well as the erroneous mapping of flood risk. This paper attempts on improving SRTM dataset, using Normalised Difference Vegetation Index (NDVI), derived from Visible Red and Near Infra-Red band obtained from Landsat with resolution of 30m, and Artificial Neural Networks (ANN). The assessment of the improvement and the applicability of this method in hydrology would be highlighted and discussed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge of ice sheet surface topography and the location of the ice divides are essential for ice dynamic modeling. An improved digital elevation model (DEM) of Dronning Maud Land (DML), Antarctica, is presented in this paper. It is based on ground-based kinematic GPS profiles, airborne radar altimetry, and data of the airborne radio-echo sounding system, as well as spaceborne laser altimetry from NASA's Ice, Cloud and land Elevation Satellite (ICESat). The accuracy of ICESat ice sheet altimetry data in the area of investigation is discussed. The location of the ice divides is derived from aspect calculation of the topography and is verified with several velocity data derived from repeated static GPS measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This raster layer represents surface elevation for the Boston Region, Massachusetts. This datalayer is a subset (covering only the Boston region) of the Massachusetts statewide digital elevation model. It was created from the digital terrain models that were produced as part of the 1:5,000 Black and White Digital Orthophoto imagery project. Cellsize is 5 meters by 5 meters. Each cell has an integer value, in meters, which represents its elevation above or below sea level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coltop3D is a software that performs structural analysis by using digital elevation model (DEM) and 3D point clouds acquired with terrestrial laser scanners. A color representation merging slope aspect and slope angle is used in order to obtain a unique code of color for each orientation of a local slope. Thus a continuous planar structure appears in a unique color. Several tools are included to create stereonets, to draw traces of discontinuities, or to compute automatically density stereonet. Examples are shown to demonstrate the efficiency of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basal sliding surfaces in large rockslides are often composed of several surfaces and possess a complex geometry. The exact morphology and location in three dimensions of the sliding surface remains generally unknown, in spite of extensive field and subsurface investigations, such as those at the Åknes rockslide (western Norway). This knowledge is crucial for volume estimations, failure mechanisms, and numerical slope stability modeling. This paper focuses on the geomorphologic characterization of the basal sliding surface of a postglacial rockslide scar in the vicinity of Åknes. This scar displays a stepped basal sliding surface formed by dip slopes of the gneiss foliation linked together by steeply dipping fractures. A detailed characterization of the rockslide scar by means of high-resolution digital elevation models permits statistical parameters of dip angle, spacing, persistence, and roughness of foliation surfaces and step fractures to be obtained. The characteristics are used for stochastic simulations of stepped basal sliding surfaces at the Åknes rockslide. These findings are compared with previous models based on geophysical investigations. This study discusses the investigation of rockslide scars and rock outcrops for a better understanding of potential rockslides. This work identifies possible basal sliding surface locations, which is a valuable input for volume estimates, design and location of monitoring instrumentation, and numerical slope stability modeling.