991 resultados para Diffusion controlled reactions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Samples of crystalline basalt from Site 396 B are all more or less altered, usually in strongly zoned patterns. Evidence has been found for several related or independent alteration stages, including (1) minor localized deuteric (amphibole and mixed clay minerals in miarolitic voids); (2) minor widespread nonoxidizing (pyrite on walls of vugs and cracks); (3) localized diffusion-controlled rug filling ("glauconite" in black halos); (4) pervasive low level oxidizing (transformation of titanomagnetite to cation-deficient titanomaghemite); (5) localized diffusion-controlled strongly oxidizing (breakdown of olivine and titanomaghemite in brown zones). Plagioclase and pyroxene are essentially unaltered. Detailed analyses of gray and brown zones in pillow basalts show that low temperature oxidation has proceeded in a step-wise fashion, with the relative stabilities of the igneous minerals controlling the steps. Secondary minerals that crystallized from pore fluids on to the walls of vugs may or may not be related to local alteration of primary phases. During the most intense stage of alteration, brown oxidation zones grew into basalt fragments behind diffusion controlled fronts. The specific reactions and products of this stage differ among the lithologic units at the site. A model is proposed whereby efficient seawater circulation through the pillow units maintains the pH and the concentrations of Mg2+ and SiO2 dissolved at low levels in pore fluids, so that olivine is replaced by hydrous ferric oxides, and Mg and SiO2 are removed from the system. In the massive basalt unit, circulation is somewhat less effective and Mg and SiO2 are retained in smectites. Deposition of authigenic minerals in the sequence saponite/Fe-Mn oxides/phillipsite/calcite in vugs and cracks may reflect the gradual closing of the systems and probably signals the end of localized oxidation in parts of the core. Mineral compositions indicate that most of these deposits formed from seawater at very low temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Internal Structure of Hydrogen-Air Diffusion Flames. Tho purpose of this paper is to study finite rate chemistry effects in diffusion controlled hydrogenair flames undor conditions appearing in some cases in a supersonic combustor. Since for large reaction rates the flame is close to chemical equilibrium, the reaction takes place in a very thin region, so thata "singular perturbation "treatment" of the problem seems appropriate. It has been shown previously that, within the inner or reaction zone, convection effects may be neglocted, the temperature is constant across the flame, and tho mass fraction distributions are given by ordinary differential equations, whore tho only independent variable involved is tho coordinate normal to the flame surface. Tho solution of the outer problom, which is a pure mixing problem with the additional condition that fuol and oxidizer do not coexist in any zone, provides t h e following information: tho flame position, rates of fuel consumption, temperature, concentrators of species, fluid velocity outside of tho flame, and the boundary conditions required to solve the "inner problem." The main contribution of this paper consists in the introduction of a fairly complicated chemical kinetic scheme representing hydrogen-oxygen reaction. The nonlinear equations expressing the conservation of chemical species are approximately integrated by means of an integral method. It has boen found that, in the case considered of a near-equilibrium diffusion flame, tho role played by the dissociation-recombination reactions is purely marginal, and that somo of the second order "shuffling" reactions are close to equilibrium. The method shown here may be applied to compute the distanco from the injector corresponding to a given separation from equilibrium, say ten to twenty percent. For the casos whore this length is a small fraction of the combustion zone length, the equilibrium treatment describes properly tho flame behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study of clay chemistry has been approached with three aims: - to modify the conducting properties by intercalation of tetrathiafulvalene, - to study the electrochemistry of redox-active coordination compounds immobilised on clay coated electrodes, and - to study the role of clays as reagents in inorganic glass forming reactions using mainly solid-state magic-angle-spinning NMR. TTF was intercalated by smectites containing different interlayer and lattice cations. Evidence from ESR and 57Fe Mossbauer indicated charge-transfer from TTF to structural iron in natural montmorillonite, and to interlayer Cu2+ in Cu2+ exchanged laponite. No charge transfer was observed for laponite (Na+ form) itself. Ion exchange of TTF3(BF4)2 with laponite was found to proceed quantitatively. The intercalated species were believed to be (TTF)2+ dimers. Conductivity data showed an order of magnitude increase for the intercalated clays. The mechanism is thought to be ionic rather than CT as Na+ laponite showed a similar enhancement in conductivity. Mechanically robust colloidal clay films were prepared on platinum electrodes. After immersion in solutions containing redox active complexes [Co(bpy)3]3+ and [Cr(bpy)3]3+, the films became electroactive when a potential was applied. Cyclic voltammograms obtained for both complexes were found to be of the diffusion controlled type. For [Co(bpy)3]3+ immobilised on clay coated electrodes, a one-step oxidation and four-step reduction wave was observed corresponding to a one electron stepwise reversible reduction of Co(III), through Co(II), Co(I), Co(O) to Co(I) oxidation state. For [Cr(bpy)3]3+ the electrochemistry was complicated by the presence of additional waves corresponding to the dissociation of [Cr(bpy)3]3+ into the diaquo complex. ESR and diffuse reflectance data supported such a mechanism. 29Si, 27Al and 23Na MAS NMR spectroscopy, supported by powder XRD and FTIR, was used to probe the role of clays as reagents in glass forming reactions. 29Si MAS NMR was found to be a very sensitive technique for identifying the presence and relative abundance of crystalline and non-crystalline phases. In thermal reactions of laponite formation of new mineral phases such as forsterite, akermanite, sillimanite and diopside were detected. The relative abundance of each phase was dependent on thermal history, chemical nature and concentration of the modifier oxide present. In continuing work, the effect of selected oxides on the glass forming reactions of a model feldspar composition was investigated using solid state NMR alone. Addition of network modifying oxides generally produced less negative 29Si chemical shifts and larger linewidths corresponding to a wider distribution of Si-O-Si bond angles and lengths, and a dominant aluminosilicate phase with a less polymerised structure than the starting material. 29Si linewidths and 27Al chemical shifts were respectively correlated with cationic potential and Lewis acidity of the oxide cations. Anomalous Al(4) chemical shifts were thought to be due to precipitation of aluminate phases rather than a breakdown in Lowenstein's aluminium avoidance principle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anthocyanins, the major red, purple, and blue pigments of plants, absorb visible as well as UV radiation and are effective antioxidants and scavengers of active oxygen species. In plant leaves, one of the functional roles proposed for anthocyanins is protection of the photosynthetic apparatus from the effects of excess incident visible or UV-B radiation and photooxidative stress. In essence, a photoprotective role requires that the excited singlet states of both complexed and uncomplexed anthocyanins deactivate back to the ground state so quickly that intersystem crossing, photoreaction, and diffusion-controlled quenching processes cannot compete. Studies of the photochemical properties of synthetic analogs of anthocyanins and of several naturally occurring anthocyanins show that this is indeed the case, uncomplexed anthocyanins decaying back to the ground state via fast (subnanosecond) excited-state proton transfer (ESPT) and anthocyanin-copigment complexes by fast (sub-picosecond) charge-transfer-mediated internal conversion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An exact analytical solution is obtained for the transient dissolution of solid spheres in a diffusion-controlled environment. This result provides a useful reference point for drug testing in humans. The dimensionless solution is expressed in terms of a single parameter, which accounts for solubility, bulk flow, and stagnant fluid composition. A simple, explicit and exact expression was found to predict time-to-complete dissolution (TCD). An approximate solution was also found which tracks the exact case for low solubility conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The process of enzyme immobilization under the diffusion-controlled regime (i.e., fast attachment of enzyme compared to its diffusion) is modeled and theoretically solved in this article. Simple and compact solutions for the penetration depth of immobilized enzyme and the bulk enzyme concentration versus time are presented. Furthermore, the conditions for the validity of our solutions are also given in this article so that researchers can discover when the theoretical solutions can be applied to their systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of heat treatment on the structure of an Australian semi-anthracite char was studied in detail in the 850-1150degreesC temperature range using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change significantly during heat treatment in the temperature range studied, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained almost unchanged. This suggests the occurrence of catalytic ordering during heat treatment, supported by the observation that the electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary significantly. Further confirmatory evidence was provided by high resolution transmission electron micrographs depicting well-organized carbon layers surrounding iron particles. It is also found that the fraction of organized carbon does not reach unity, but attains an apparent equilibrium value that increases with increase in temperature, providing an apparent heat of ordering of 71.7 kJ mol(-1) in the temperature range studied. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is indeed structure sensitive. Good correlation was also found between the electrical resistivity and the reactivity of coal char. All these results strongly suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. Based on kinetic interpretation of the data it is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be very low, at about 11.8 kJ mol(-1), which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modelling of the experimental data of the extraction of the volatile oil from six aromatic plants (coriander, fennel, savoury, winter savoury, cotton lavender and thyme) was performed using five mathematical models, based on differential mass balances. In all cases the extraction was internal diffusion controlled and the internal mass transfer coefficienty (k(s)) have been found to change with pressure, temperature and particle size. For fennel, savoury and cotton lavender, the external mass transfer and the equilibrium phase also influenced the second extraction period, since k(s) changed with the tested flow rates. In general, the axial dispersion coefficient could be neglected for the conditions studied, since Peclet numbers were high. On the other hand, the solute-matrix interaction had to be considered in order to ensure a satisfactory description of the experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrooxidative behavior of citalopram (CTL) in aqueous media was studied by cyclic voltammetry (CV) and square-wave voltammetry (SWV) at a glassy-carbon electrode. The electrochemical behaviour of CTL involves two electrons and two protons in the irreversible and diffusion controlled oxidation of the tertiary amine group. The maximum analytical signal was obtained in a phosphate buffer (pH ¼ 8.2). For analytical purposes, an SWV method and a flow-injection analysis (FIA) system with amperometric detection were developed. The optimised SWV method showed a linear range between 1.10 10 5–1.20 10 4 molL 1, with a limit of detection (LOD) of 9.5 10 6 molL 1. Using the FIA method, a linear range between 2.00 10 6–9.00 10 5 molL 1 and an LODof 1.9 10 6 molL 1 were obtained. The validation of both methods revealed good performance characteristics confirming applicability for the quantification of CTL in several pharmaceutical products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this work was to develop a reliable alternative method for the determination of the dithiocarbamate pesticide mancozeb (MCZ) in formulations. Furthermore, a method for the analysis of MCZ's major degradation product, ethylenethiourea (ETU), was also proposed. Cyclic voltammetry was used to characterize the electrochemical behavior of MCZ and ETU, and square-wave adsorptive stripping voltammetry (SWAdSV) was employed for MCZ quantification in commercial formulations. It was found that both MCZ and ETU are irreversibly reduced (− 0.6 V and − 0.5 V vs Ag/AgCl, respectively) at the surface of a glassy carbon electrode in a mainly diffusion-controlled process, presenting maximum peak current intensities at pH 7.0 (in phosphate buffered saline electrolyte). Several parameters of the SWAdSV technique were optimized and linear relationships between concentration and peak current intensity were established between 10–90 μmol L− 1 and 10–110 μmol L− 1 for MCZ and ETU, respectively. The limits of detection were 7.0 μmol L− 1 for MCZ and 7.8 μmol L− 1 for ETU. The optimized method for MCZ was successfully applied to the quantification of this pesticide in two commercial formulations. The developed procedures provided accurate and precise results and could be interesting alternatives to the established methods for quality control of the studied products, as well as for analysis of MCZ and ETU in environmental samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of flow induced by a random acceleration field (g-jitter) are considered in two related situations that are of interest for microgravity fluid experiments: the random motion of isolated buoyant particles, and diffusion driven coarsening of a solid-liquid mixture. We start by analyzing in detail actual accelerometer data gathered during a recent microgravity mission, and obtain the values of the parameters defining a previously introduced stochastic model of this acceleration field. The diffusive motion of a single solid particle suspended in an incompressible fluid that is subjected to such random accelerations is considered, and mean squared velocities and effective diffusion coefficients are explicitly given. We next study the flow induced by an ensemble of such particles, and show the existence of a hydrodynamically induced attraction between pairs of particles at distances large compared with their radii, and repulsion at short distances. Finally, a mean field analysis is used to estimate the effect of g-jitter on diffusion controlled coarsening of a solid-liquid mixture. Corrections to classical coarsening rates due to the induced fluid motion are calculated, and estimates are given for coarsening of Sn-rich particles in a Sn-Pb eutectic fluid, an experiment to be conducted in microgravity in the near future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study was to evaluate the efficacy of sustained release of vancomycin and teicoplanin from a resorbable gelatin glycerol sponge, in order to establish a new delivery system for local anti-infective therapy. MATERIALS AND METHODS: 60 plasticized glycerol gelatin sponges containing either 10 or 20% gelatin (w/v) were incubated in vancomycin or teicoplanin solution at 20 degrees C for either 1 or 24 h. In vitro release properties of the sponges were investigated over a period of 1 week by determining the levels of vancomycin and teicoplanin eluted in plasma using fluorescent polarization immunoassay. The rate constant and the half-life for the antibiotic release of each group were calculated by linear regression assuming first order kinetics. RESULTS: Presoaking for 24 h was associated with a significant increase in the total antibiotic release in all groups opposed to 1 h of incubation, except for the 10% sponges presoaked in teicoplanin. Doubling the gelatin content of the sponges from 10 to 20% significantly increased the total release of antibiotic load only in teicoplanin-containing sponges after 24 h incubation. In all corresponding groups investigated, release of vancomycin was more prolonged compared to teicoplanin, which allowed a gradual release beyond 5 days. The half-life (h +/- SEM) of both types of vancomycin-containing sponges was significantly prolonged by 24 h incubation in comparison to 1 h incubation (29.1 +/- 5.9 vs 5.9 +/- 1.0; p < 0.001, 30.0 +/- 2.1 vs 11.1 +/- 1.9; p < 0.001). However, neither doubling the gelatin content of the sponges nor a prolonged incubation was associated with a significantly prolonged delivery of teicoplanin. CONCLUSION: This study demonstrated a better diffusion-controlled release of vancomycin-impregnated glycerol gelatin sponges compared to those pretreated with teicoplanin. The plasticized glycerol gelatin sponge may be a promising carrier for the application of vancomycin to infected wounds for local anti-infective therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of the reactions of organometallic complexes with the surfaces of inorganic oxides, zeolites and metals constitutes the basis of Surface Organometallic Chemistry (SOMC). The basic rules of organometallic chemistry are often valid when applied to surfaces and well-defined surface organometallic complexes can be obtained. These complexes can be used as heterogeneous catalysts or, by controlled reactions, can be transformed in other species useful for a given catalytic reaction. In some cases, these catalysts exhibit higher activity and/or selectivity than their analogous molecular complexes.