990 resultados para Die Steel
Resumo:
In the present investigation, various kinds of textures, namely, unidirectional, 8-ground, and random were attained on the die surfaces. Roughness of the textures was varied using different grits of emery papers or polishing powders. Then pins made of Al-4Mg alloys were slid against steel plates at various numbers of cycles, namely 1, 2, 6, 10 and 20 under both dry and lubricated conditions using an inclined pin-on-plate sliding tester. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. Surface roughness parameters of the plate were measured using an optical profilometer. It was observed that the coefficient of friction and formation of transfer layer during the first few cycles depend on the die surface textures under both dry and lubricated conditions. It was also observed that under lubricated condition, the coefficient of friction decreases with number of cycles for all kinds of textures. However, under dry condition, it ecreases for unidirectional and 8-ground surfaces while for random surfaces it increases with number of cycles
Resumo:
Wear of dies is a serious problem in the forging industry. The materials used for the dies are generally expensive steel alloys and the dies require costly heat treatment and surface finishing operations. Degeneration of the die profile implies rejection of forged components and necessitates resinking or replacement of the die. Measures which reduce wear of the die can therefore aid in the reduction of production costs. The work reported here is the first phase of a study of the causes of die wear in forging production where the batch size is small and the machine employed is a light hammer. This is a problem characteristic of the medium and small scale area of the forging industry where the cost of dies is a significant proportion of the total capital investment. For the same energy input and under unlubricated conditions, die wear has been found to be sensitive to forging temperature; in cold forging the yield strength of the die material is the prime factor governing the degeneration of the die profile, whilst in hot forging the wear resistance of the die material is the main factor which determines the rate of die wear. At an intermediate temperature, such as that characteristic of warm forging, the die wear is found to be less than that in both cold and hot forging. This preliminary study therefore points to the fact that the forging temperature must be taken into account in the selection of die material. Further, the forging industry must take serious note of the warm forging process, as it not only provides good surface finish, as claimed by many authors, but also has an inherent tendency to minimize die wear.
Resumo:
In the present investigation, various kinds of textures, namely, unidirectional, 8-ground, and random were attained on the die surfaces. Roughness of the textures was varied using different grits of emery papers or polishing powders. Then pins made of Al-4Mg alloys were slid against steel plates at various numbers of cycles, namely, 1, 3, 5, 10 and 20 using pin-on-plate reciprocating sliding tester. Tests were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. A constant normal load of 35 N was applied in the tests. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. Surface roughness parameters of the plates were measured using an optical profilometer. In the experiments, it was observed that the coefficient of friction and formation of the transfer layer depend on the die surface textures under both dry and lubricated conditions. More specifically, the coefficient of friction decreases for unidirectional and 8-ground surfaces while for random surfaces it increases with number of cycles. However, the coefficient of friction is highest for the sliding perpendicular to the unidirectional textures and least for the random textures under both dry and lubricated conditions. The difference in friction values between these two surfaces decreases with increasing number of cycles. The variation in the coefficient of friction under both dry and lubrication conditions is attributed to the change in texture of the surfaces during sliding. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work demonstrates the feasibility of mesoscale (100 μm to mm) punching of multiple holes of intricate shapes in metals. Analytical modeling, finite element (FE)simulation, and experimentations are used in this work. Two dimensional FE simulations in ABAQUS were done with an assumed material modeling and plane-strain condition. A known analytical model was used and compared with the ABAQUS simulation results to understand the effects of clearance between the punch and the die. FE simulation in ABAQUS was done for different clearances and corner radii at punch, die, and holder. A set of punches and dies were used to punch out a miniature spring-steel gripper. Comparison of compliant grippers manufactured by wire-cut electro discharge machining(EDM) and punching shows that realizing sharp interior and re-entrant corners by punching is not easy to achieve. Punching of circular holes with 5 mm and 2.5 mm diameter is achieved. The possibility of realizing meso-scale parts with complicated shapes through punching is demonstrated in this work; and some strategies are suggested for improvement.
Resumo:
A wear mechanism map of uncoated high-speed steel (HSS) tools was constructed under the conditions of dry-drilling die-cast magnesium alloys. Three wear mechanisms appear in the map based on the microanalysis of drilled HSS tools by SEM, including adhesive wear, abrasive wear and diffusion wear. In the map, there exists a minor wear region which is called "safety zone". This wear mechanism map will be a good reference for choosing suitable drilling parameters when drilling die-cast magnesium alloys.
Resumo:
The title compound 1-(4,5-dihydro-3-phenylpyridine-1-yl)-2-(1H-1,2,4-triazole-1-yl)ethyl ketone (DTE) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid solutions was investigated by means of weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electronic microscope (SEM). Results obtained revealed that DIE performed excellently as a corrosion inhibitor for mild steel in 1 M hydrochloric acid media and its efficiency attains more than 90.9% at 1.0 x 10(-3) M at 298 K. Polarization curves indicated that the inhibitor behave mainly as mixed-type inhibitor. EIS showed that the charge transfer controls the corrosion process in the uninhibited and inhibited solutions. Adsorption of the inhibitor on the mild steel surface followed Langmuir adsorption isotherm. And the values of the free energy of adsorption Delta G(ads) indicated that the adsorption of DTE molecule was a spontaneous process and was typical of chemisorption. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit der Computersimulation des Rissinitiierungsprozesses für einen martensitischen Stahl, der der niederzyklischen Ermüdung unterworfen wurde. Wie auf der Probenoberfläche beobachtet wurde, sind die Initiierung und das frühe Wachstum dieser Mikrorisse in hohem Grade von der Mikrostruktur abhängig. Diese Tatsache wurde in mesoskopischen Schädigungsmodellen beschrieben, wobei die Körner als einzelne Kristalle mit anisotropem Materialverhalten modelliert wurden. Das repräsentative Volumenelement (RVE), das durch einen Voronoi-Zerlegung erzeugt wurde, wurde benutzt, um die Mikrostruktur des polykristallinen Materials zu simulieren. Spannungsverteilungen wurden mit Hilfe der Finiten-Elemente-Methode mit elastischen und elastoplastischen Materialeigenschaften analysiert. Dazu wurde die Simulation zunächst an zweidimensionalen Modellen durchgeführt. Ferner wurde ein vereinfachtes dreidimensionales RVE hinsichtlich des sowohl dreidimensionalen Gleitsystems als auch Spannungszustandes verwendet. Die kontinuierliche Rissinitiierung wurde simuliert, indem der Risspfad innerhalb jedes Kornes definiert wurde. Die Zyklenanzahl bis zur Rissinitiierung wurde auf Grundlage der Tanaka-Mura- und Chan-Gleichungen ermittelt. Die Simulation lässt auf die Flächendichten der einsegmentige Risse in Relation zur Zyklenanzahl schließen. Die Resultate wurden mit experimentellen Daten verglichen. Für alle Belastungsdehnungen sind die Simulationsergebnisse mit denen der experimentellen Daten vergleichbar.
Resumo:
Cemented carbide is today the most frequently used drawing die material in steel wire drawing applications. This is mainly due to the possibility to obtain a broad combination of hardness and toughness thus meeting the requirements concerning strength, crack resistance and wear resistance set by the wire drawing process. However, the increasing cost of cemented carbide in combination with the possibility to increase the wear resistance of steel through the deposition of wear resistant CVD and PVD coatings have enhanced the interest to replace cemented carbide drawing dies with CVD and PVD coated steel wire drawing dies. In the present study, the possibility to replace cemented carbide wire drawing dies with CVD and PVD coated steel drawing dies have been investigated by tribological characterisation, i.e. pin-on-disc and scratch testing, in combination with post-test observations of the tribo surfaces using scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D surface profilometry. Based on the results obtained, CVD and PVD coatings aimed to provide improved tribological performance of steel wire drawing dies should display a smooth surface topography, a high wear resistance, a high fracture toughness (i.e. a high cracking and chipping resistance) and intrinsic low friction properties in contact with the wire material. Also, the steel substrate used must display a sufficient load carrying capacity and resistance to thermal softening. Of the CVD and PVD coatings evaluated in the tribological tests, a CVD TiC and a PVD CrC/C coating displayed the most promising results.
Resumo:
Aussagen zur Lebensdauer von Zahnriemen sind ein wesentlicher Bestandteil zur Auslegung und Überwachung von Zahnriementrieben. An der Professur für Technische Logistik werden endliche Zahnriemen mit Stahlcord beim Einsatz als Tragmittel untersucht, um grundsätzliche Aussagen zur Lebensdauer zu erhalten.
Resumo:
Aluminium is added to decrease matrix chromium losses on 430 stainless steel sintered on nitrogen atmosphere. Three different ways were used to add a 3% (in weight) aluminium: as elemental powder, as prealloyed powder, and as intermetallic Fe-AI compound. After die pressing at densities between 6.1-6.5 g/cm3, samples were sintered on vacuum and on N2-5%H2 atmosphere in a dilatometric furnace. Therefore, dimensional change was recorded during sintering. Weight gain was obtained after nitrogen sintering on all materials due to nitrides formation. Sample expansion was obtained on all nitrogen sintered steels with Al additions. Microstructure showed a dispersion of aluminium nitrides when pre-alloyed powders are used. On the contrary, aluminium nitride areas can be found when aluminium is added as elemental powders or as Fe-AI intermetallics. Also nitrogen atmosphere leads to austenite formation and hence, on cooling, dilatometric results showed a dimensional change at austenitic-ferritic phase transformation temperature.
Resumo:
"Sachverzeichnis", p. [513]-518, is inserted following p. viii.
Resumo:
Mode of access: Internet.