973 resultados para Diastolic stiffness
Resumo:
Background Independent of other cardiovascular (CV) risk factors, increased arterial stiffness has been established as a predictor of morbidity and mortality. The main aim of this study was to investigate the impact of diabetes on arterial stiffness in a representative sample of an urban Brazilian population plus Amerindians. Methods A total of 1,415 individuals from the general population were randomly selected plus 588 Amerindians from a native community in Brazil. In addition, a sub-sample of 380 individuals from the general population had 5-year follow-up data. Pulse wave velocity (PWV) was measured with a non-invasive automatic device (Complior, Colson; Garges les Gonesses, France) and increased arterial stiffness was defined as PWV ≥ 12 m/s. Results In the overall group, diabetic individuals had higher frequencies of increased arterial stiffness and hypertension. They also had higher values of PWV, body mass index, total cholesterol, triglycerides, systolic and diastolic blood pressures compared to non-diabetic individuals (p < 0.01). In an analysis stratified by hypertension, PWV values and increased arterial stiffness frequency were higher in diabetic individuals in both groups (hypertensive and non-hypertensive) (p < 0.05). Furthermore, higher risk for increased arterial stiffness was observed in the diabetic individuals from the overall group (OR = 2.27; CI = 1.47-3.52, p < 0.001) and from the hypertensive group (OR = 2.70; CI = 1.58-4.75, p < 0.001), adjusted for covariates. Regarding the ethnic stratification, diabetic individuals from Amerindian, White, and Mulatto (mixed-race) groups had higher PWV values and a greater frequency of increased arterial stiffness compared to non-diabetic individuals. Both diabetic and non-diabetic individuals had higher PWV values after 5 years. There was no significant difference in the 5-year PWV progression in diabetic compared to non-diabetic individuals. Conclusions These results confirm, in a sample of Brazilian population, that the presence of diabetes is associated with increased arterial stiffness and it may contribute in part to increased cardiovascular risk in diabetic patients.
Resumo:
Hemodynamic effects related to changes in serum ionized calcium (iCa) are difficult to determine during conventional hemodialysis (HD) using a fixed dialysate concentration of calcium. Regional citrate anticoagulation (RCA) allows the study of the effects of predefined iCa changes on arterial stiffness and blood pressure (BP) during a single dialysis session. In a crossover study, 15 patients with end-stage renal disease underwent two HD sessions with RCA. Each session was divided into two study phases in which iCa was titrated either to 0.8-1.0 mm or to 1.1-1.4 mm. The sequence of phases was randomly chosen and alternated for the second session. After reaching a stable iCa level, pulse wave velocity (PWV), arterial BP, and heart rate were measured. iCa levels were modified during sequence 1 (iCa low-high) from a predialysis baseline value of 1.15 ± 0.09 mm, first to 0.92 ± 0.05 mm (time point 1; P < 0.001 vs. baseline) and then to 1.18 ± 0.05 (time point 2; ns). During sequence 2 (iCa high-low), iCa levels were modified from 1.15 ± 0.12 mm first to 1.20 ± 0.05 mm (time point 1; ns vs. baseline) and then to 0.93 ± 0.03 (time point 2; P < 0.001). Assuming a basic linear repeated measures model, PWV was positively related to iCa levels (P < 0.03) independent of systolic or diastolic BP, heart rate, or ultrafiltration rate. PWV is closely related to acute changes in serum iCa levels in HD patients using RCA. RCA provides an interesting opportunity to study the effects of acute iCa changes during one dialysis procedure.
Resumo:
OBJECTIVE Altered arterial stiffness is a recognized risk factor of poor cardiovascular health. Ambulatory arterial stiffness index (AASI, defined as one minus the regression slope of diastolic on systolic blood pressure values derived from a 24 h arterial blood pressure monitoring, ABPM) is an upcoming and readily available marker of arterial stiffness. Our hypothesis was that AASI is increased in obese children compared to age- and gender matched healthy subjects. METHODS AASI was calculated from ABPM in 101 obese children (BMI ≥ 1.88 SDS according to age- and sex-specific BMI charts), 45% girls, median BMI SDS 2.8 (interquartile range (IQR) 2.5-3.4), median age 11.5 years (9.1-13.4) and compared with an age and gender matched healthy control group of 71 subjects with median BMI SDS 0.0 (-0.8-0.5). Multivariate regression analysis was applied to identify significant independent factors explaining AASI variability in this population. RESULTS AASI was significantly higher in obese children compared to controls (0.388 (0.254-0.499) versus 0.190 (0.070-0.320), p < 0.0001), but blood pressure values were similar. In a multivariate analysis including obese children only, AASI was independently predicted by 24-h systolic blood pressure SDS (p = 0.012); in a multivariate analysis including obese children and controls BMI SDS and pulse pressure independently influenced AASI (p < 0.001). CONCLUSIONS This study shows that AASI, a surrogate marker of arterial stiffness, is increased in obese children. AASI seems to be influenced by BMI and pulse pressure independently of systolic and diastolic blood pressure values, suggesting that other factors are involved in increased arterial stiffness in obese children.
Inactive Matrix Gla-Protein Is Associated With Arterial Stiffness in an Adult Population-Based Study
Resumo:
Increased pulse wave velocity (PWV) is a marker of aortic stiffness and an independent predictor of mortality. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular markers, cardiovascular outcomes, and mortality. In this study, we hypothesized that high levels of dp-ucMGP are associated with increased PWV. We recruited participants via a multicenter family-based cross-sectional study in Switzerland. Dp-ucMGP was quantified in plasma by sandwich ELISA. Aortic PWV was determined by applanation tonometry using carotid and femoral pulse waveforms. Multiple regression analysis was performed to estimate associations between PWV and dp-ucMGP adjusting for age, renal function, and other cardiovascular risk factors. We included 1001 participants in our analyses (475 men and 526 women). Mean values were 7.87±2.10 m/s for PWV and 0.43±0.20 nmol/L for dp-ucMGP. PWV was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, height, systolic and diastolic blood pressure (BP), heart rate, renal function, low- and high-density lipoprotein, glucose, smoking status, diabetes mellitus, BP and cholesterol lowering drugs, and history of cardiovascular disease (P≤0.01). In conclusion, high levels of dp-ucMGP are independently and positively associated with arterial stiffness after adjustment for common cardiovascular risk factors, renal function, and age. Experimental studies are needed to determine whether vitamin K supplementation slows arterial stiffening by increasing MGP carboxylation.
Resumo:
Vascular disease is accelerated in patients with Type 2 diabetes mellitus (T2DM). Since the systemic vasculature plays a pivotal role in myocardial loading, this study aimed to determine the effect of arterial characteristics on left ventricular (LV) morphology and function in patients with T2DM. Conventional echocardiography and tissue Doppler imaging were performed in 172 T2DM patients (95 men; aged 55±11y) with preserved ejection fraction (62±5%). Patients were stratified into groups based on LV geometric pattern (normal [n = 79], concentric remodeling [n = 33], concentric hypertrophy [n = 29], eccentric hypertrophy [n = 31]). Total arterial compliance (TAC) was recorded by simultaneous radial tonometry and aortic outflow pulsed wave Doppler. Arterial (brachial and carotid) structure and function were determined by standard ultrasound methods. There were no significant differences between the LV geometric groups in demographic or clinical parameters. The concentric hypertrophy group had significantly increased carotid artery diameter (6.0±0.7mm versus 6.5±0.7mm; p < 0.05) and stiffness (1912±1203 dynes/cm2mm versus 2976±2695 dynes/cm2mm×10−6; p < 0.05) compared to those with normal geometry. However, TAC did not differ between groups. LV diastolic function, as determined by the ratio of diastolic mitral inflow velocity to mitral annulus tissue velocity (E/E_), was significantly associated with carotid artery relative wall thickness and intima media thickness (p < 0.05). Moreover, E/E_ was independently predicted by carotid artery relative wall thickness (β = 22.9; p = 0.007). We conclude that structural characteristics of the carotid artery are associated with abnormal LV structure and function in patients with T2DM. The LV functional irregularities may be a downstream consequence of amplified pressure wave reflections effecting sub-optimal ventricular-vascular interaction.
Resumo:
This study examined the relationships among ethnicity/race, lifestyle factors, phylloquinone (vitamin K₁) intake, and arterial pulse pressure in a nationally representative sample of older adults from four ethnic/racial groups: non-Hispanic Whites, non-Hispanic Blacks, Mexican Americans, and other Hispanics. This was a cross-sectional study of U.S. representative sample with data from the National Health and Nutrition Examination Surveys, 2007-2008 and 2009-2010 of adults aged 50 years and older (N = 5296). Vitamin K intake was determined by 24-hour recall. Pulse pressure was calculated as the difference between the averages of systolic blood pressure and diastolic blood pressure. Compared to White non-Hispanics, the other ethnic/racial groups were more likely to have inadequate vitamin K₁ intake. Inadequate vitamin K₁ intake was an independent predictor of high arterial pulse pressure. This was the first study that compared vitamin K₁ inadequacy with arterial pulse pressure across ethnicities/races in U.S. older adults. These findings suggest that vitamin K screening may be a beneficial marker for the health of older adults.
Resumo:
Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved
Resumo:
Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.
Resumo:
Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (N mm− 1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived from a single 2D radiographic image. This ex-vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD.
Resumo:
A Computational fluid dynamics (CFD) approach is used to model fluid flow in a journal bearing with three equi-spaced axial grooves and supplied with water from one end. Water is subjected to both velocity (Couette) & pressure induced (Poiseuille) flow. The working fluid passing through the bearing clearance generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotor dynamic force component for predicting the instability of rotor bearing systems. In this paper a study has been made to obtain the stiffness and damping coefficients of 3 axial groove bearing using Perturbation technique.