888 resultados para Diagnostic Reasoning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to develop and trial a method to monitor the evolution of clinical reasoning in a PBL curriculum that is suitable for use in a large medical school. Termed Clinical Reasoning Problems (CRPs), it is based on the notion that clinical reasoning is dependent on the identification and correct interpretation of certain critical clinical features. Each problem consists of a clinical scenario comprising presentation, history and physical examination. Based on this information, subjects are asked to nominate the two most likely diagnoses and to list the clinical features that they considered in formulating their diagnoses, indicating whether these features supported or opposed the nominated diagnoses. Students at different levels of medical training completed a set of 10 CRPs as well as the Diagnostic Thinking Inventory, a self-reporting questionnaire designed to assess reasoning style. Responses were scored against those of a reference group of general practitioners. Results indicate that the CRPs are an easily administered, reliable and valid assessment of clinical reasoning, able to successfully monitor its development throughout medical training. Consequently, they can be employed to assess clinical reasoning skill in individual students and to evaluate the success of undergraduate medical schools in providing effective tuition in clinical reasoning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ISBN: 3-540-76198-5 (out of print)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three experiments investigated the effect of rarity on people's selection and interpretation of data in a variant of the pseudodiagnosticity task. For familiar (Experiment 1) but not for arbitrary (Experiment 3) materials, participants were more likely to select evidence so as to complete a likelihood ratio when the initial evidence they received was a single likelihood concerning a rare feature. This rarity effect with familiar materials was replicated in Experiment 2 where it was shown that participants were relatively insensitive to explicit manipulations of the likely diagnosticity of rare evidence. In contrast to the effects for data selection, there was an effect of rarity on confidence ratings after receipt of a single likelihood for arbitrary but not for familiar materials. It is suggested that selecting diagnostic evidence necessitates explicit consideration of the alternative hypothesis and that consideration of the possible consequences of the evidence for the alternative weakens the rarity effect in confidence ratings. Paradoxically, although rarity effects in evidence selection and confidence ratings are in the spirit of Bayesian reasoning, the effect on confidence ratings appears to rely on participants thinking less about the alternative hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Across a range of domains in psychology different theories assume different mental representations of knowledge. For example, in the literature on category-based inductive reasoning, certain theories (e.g., Rogers & McClelland, 2004; Sloutsky & Fisher, 2008) assume that the knowledge upon which inductive inferences are based is associative, whereas others (e.g., Heit & Rubinstein, 1994; Kemp & Tenenbaum, 2009; Osherson, Smith, Wilkie, López, & Shafir, 1990) assume that knowledge is structured. In this article we investigate whether associative and structured knowledge underlie inductive reasoning to different degrees under different processing conditions. We develop a measure of knowledge about the degree of association between categories and show that it dissociates from measures of structured knowledge. In Experiment 1 participants rated the strength of inductive arguments whose categories were either taxonomically or causally related. A measure of associative strength predicted reasoning when people had to respond fast, whereas causal and taxonomic knowledge explained inference strength when people responded slowly. In Experiment 2, we also manipulated whether the causal link between the categories was predictive or diagnostic. Participants preferred predictive to diagnostic arguments except when they responded under cognitive load. In Experiment 3, using an open-ended induction paradigm, people generated and evaluated their own conclusion categories. Inductive strength was predicted by associative strength under heavy cognitive load, whereas an index of structured knowledge was more predictive of inductive strength under minimal cognitive load. Together these results suggest that associative and structured models of reasoning apply best under different processing conditions and that the application of structured knowledge in reasoning is often effortful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored the development of sensitivity to causal relations in children’s inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey → predator) or diagnostic (predator → prey), and the property that participants reasoned about established either a taxonomic or causal context. There was a causal asymmetry effect across all age groups, with more causal choices when the causal link was predictive than when it was diagnostic. Furthermore, context-sensitive causal reasoning showed a curvilinear development, with causal choices being most frequent for 8-year-olds regardless of context. Causal inductions decreased thereafter because 12-year-olds and adults made more taxonomic choices when reasoning in the taxonomic context. These findings suggest that simple causal relations may often be the default knowledge structure in young children’s inductive reasoning, that sensitivity to causal direction is present early on, and that children over-generalize their causal knowledge when reasoning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unmanned Aerial Vehicles (UAVs) may develop cracks, erosion, delamination or other damages due to aging, fatigue or extreme loads. Identifying these damages is critical for the safe and reliable operation of the systems. ^ Structural Health Monitoring (SHM) is capable of determining the conditions of systems automatically and continually through processing and interpreting the data collected from a network of sensors embedded into the systems. With the desired awareness of the systems’ health conditions, SHM can greatly reduce operational cost and speed up maintenance processes. ^ The purpose of this study is to develop an effective, low-cost, flexible and fault tolerant structural health monitoring system. The proposed Index Based Reasoning (IBR) system started as a simple look-up-table based diagnostic system. Later, Fast Fourier Transformation analysis and neural network diagnosis with self-learning capabilities were added. The current version is capable of classifying different health conditions with the learned characteristic patterns, after training with the sensory data acquired from the operating system under different status. ^ The proposed IBR systems are hierarchy and distributed networks deployed into systems to monitor their health conditions. Each IBR node processes the sensory data to extract the features of the signal. Classifying tools are then used to evaluate the local conditions with health index (HI) values. The HI values will be carried to other IBR nodes in the next level of the structured network. The overall health condition of the system can be obtained by evaluating all the local health conditions. ^ The performance of IBR systems has been evaluated by both simulation and experimental studies. The IBR system has been proven successful on simulated cases of a turbojet engine, a high displacement actuator, and a quad rotor helicopter. For its application on experimental data of a four rotor helicopter, IBR also performed acceptably accurate. The proposed IBR system is a perfect fit for the low-cost UAVs to be the onboard structural health management system. It can also be a backup system for aircraft and advanced Space Utility Vehicles. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the high standards expected from diagnostic medical imaging, the analysis of information regarding waiting lists via different information systems is of utmost importance. Such analysis, on the one hand, may improve the diagnostic quality and, on the other hand, may lead to the reduction of waiting times, with the concomitant increase of the quality of services and the reduction of the inherent financial costs. Hence, the purpose of this study is to assess the waiting time in the delivery of diagnostic medical imaging services, like computed tomography and magnetic resonance imaging. Thereby, this work is focused on the development of a decision support system to assess waiting times in diagnostic medical imaging with recourse to operational data of selected attributes extracted from distinct information systems. The computational framework is built on top of a Logic Programming Case-base Reasoning approach to Knowledge Representation and Reasoning that caters for the handling of in-complete, unknown, or even self-contradictory information.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: