999 resultados para Defensive behaviour
Resumo:
Two defensive tactics of neonates of nurse sharks, Ginglymostoma cirratum, are reported based on underwater observations. Described as "hiding behaviour" and "substrate resemblance", the defensive strategies were categorized according to the predominant habitat in which the individuals were found and to the behaviour displayed by the sharks in the presence of the observer. In structurally more complex habitats with a wide availability of shelters, the preferential behaviour displayed by neonates is to hide inside holes or crevices. When in open areas deprived of refuges, neonates tend to resemble arborescent coverings as seaweed banks or colonies of octocorals, which allows the use of more exposed habitats without increasing the susceptibility of capture by predators. Both aspects are relevant for a better understanding of the behaviour of neonates of G. cirratum and have important implications for identifying important habitat in nursery areas, and also for the management of this vulnerable species off South America.
Costs and benefits of freezing behaviour in the harvestman Eumesosoma roeweri (Arachnida, Opiliones)
Resumo:
Animals present an enormous variety of behavioural defensive mechanisms, which increase their survival, but often at a cost. Several animal taxa reduce their chances of being detected and/or recognized as prey items by freezing (remaining completely motionless) in the presence of a predator. We studied costs and benefits of freezing in immature Eumesosoma roeweri (Opiliones, Sclerosomatidae). Preliminary observations showed that these individuals often freeze in the presence of the syntopic predatory spider Schizocosa ocreata (Araneae, Lycosidae). We verified that harvestmen paired with predators spent more time freezing than when alone or when paired with a conspecific. Then. we determined that predator chemical cues alone did not elicit freezing behaviour. Next, we examined predator behaviour towards moving/non-moving prey and found that spiders attacked moving prey significantly more, suggesting an advantage of freezing in the presence of a predator. Finally, as measure of the foraging costs of freezing, we found that individuals paired with a predator for 2 h gained significantly less weight than individuals paired with a conspecific or left alone. Taken together, our results suggest that freezing may protect E. roeweri harvestmen from predatory attacks by wolf spiders, but at the cost of reduced food and/or water intake. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19-25% and increased movement (number of line-crosses) by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species.
Resumo:
Knowing when to compete and when to cooperate to maximize opportunities for equal access to activities and materials in groups is critical to children's social and cognitive development. The present study examined the individual (gender, social competence) and contextual factors (gender context) that may determine why some children are more successful than others. One hundred and fifty-six children (M age=6.5 years) were divided into 39 groups of four and videotaped while engaged in a task that required them to cooperate in order to view cartoons. Children within all groups were unfamiliar to one another. Groups varied in gender composition (all girls, all boys, or mixed-sex) and social competence (high vs. low). Group composition by gender interaction effects were found. Girls were most successful at gaining viewing time in same-sex groups, and least successful in mixed-sex groups. Conversely, boys were least successful in same-sex groups and most successful in mixed-sex groups. Similar results were also found at the group level of analysis; however, the way in which the resources were distributed differed as a function of group type. Same-sex girl groups were inequitable but efficient whereas same-sex boy groups were more equitable than mixed groups but inefficient compared to same-sex girl groups. Social competence did not influence children's behavior. The findings from the present study highlight the effect of gender context on cooperation and competition and the relevance of adopting an unfamiliar peer paradigm when investigating children's social behavior.
Resumo:
Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.